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ABSTRACT

Blendshape facial rigs are used extensively in the industry for facial
animation of virtual humans. However, storing and manipulating
large numbers of facial meshes is costly in terms of memory and
computation for gaming applications, yet the relative perceptual
importance of blendshapes has not yet been investigated. Research
in Psychology and Neuroscience has shown that our brains process
faces differently than other objects, so we postulate that the per-
ception of facial expressions will be feature-dependent rather than
based purely on the amount of movement required to make the ex-
pression. In this paper, we explore the noticeability of blendshapes
under different activation levels, and present new perceptually
based models to predict perceptual importance of blendshapes. The
models predict visibility based on commonly-used geometry and
image-based metrics.

CCS CONCEPTS

« Applied computing — Psychology; + Computing method-
ologies — Mesh geometry models; - Mathematics of comput-
ing — Equational models.
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1 INTRODUCTION

Virtual human expressions are generally created by animating
blendshape rigs [Lewis et al. 2014] based on the Facial Action Cod-
ing System (FACS) [Ekman and Friesen 1978b]. However, these
rigs are computationally expensive for real-time applications due
to the large amounts of geometry processing. The question of im-
portance of blendshapes is therefore of great interest to computer
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games and other real-time applications, with the aim of reducing
the number of blendshapes needed for animating a rig [Costigan
et al. 2016], or prioritising which blendshapes to include in expres-
sions for example-based rig creation algorithms [Carrigan et al.
2020]. Additionally, algorithms that create or alter facial geometry
are usually evaluated against ground-truth facial meshes using stan-
dard geometry error metrics, however, we postulate that standard
error-metrics may not be sufficient to determine how perceptually
different the results are to the ground-truth.

Due to the fact that humans are particularly attuned to face
perception [Bruce and Young 2013], we expect that differences in
perception of facial action units will not align with the magnitude
of displacement on the mesh caused by the expression. We hypoth-
esise that small displacements in salient regions (e.g., eyelids) will
be more perceptually noticeable than larger displacements in less
salient regions (e.g., puffing of cheeks), which may not be accurately
reflected by standard geometric and image error metrics. We also
expect that the sex and race of the face will affect the perception
of action units on that face, due to social conditioning [Hess et al.
2004; Lindsay et al. 1991].

In this paper, we investigate the perceptual impact of a carefully
selected range of expressive action units at varying activation levels
across a number of characters of different race and sex. We then
compare our qualitative perceptual results to quantitative metrics
in order to determine whether the perceptual effect can be pre-
dicted directly. We aim to determine if our question of perceived
action unit importance can be predicted by calculating the error
between the neutral pose and the expression blendshape, using
both standard and perceptually based metrics, calculated from ei-
ther the 3D geometry or the rendered 2D image. We then perform
linear regression analysis to determine the best model describing
the relationship between perception and error metrics. We address
a number of questions, such as:

e Are certain facial action units more perceptually noticeable
than others?

e Can we predict the saliency of facial action units using nu-
merical error metrics, and is there a benefit to using existing
perceptually based metrics?

e Are 3D geometry or 2D image-based metrics better at pre-
dicting the saliency of facial action units?

2 RELATED WORK

Face perception is a very active area of study in Psychology, as
humans have been shown to have specialised sensory and interpre-
tative processes related to faces [Bruce and Young 2013; Farah et al.
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1998; Kanwisher et al. 1997]. Work by Schwaninger et al. [2009;
2006] shows that faces are processed both in terms of their com-
ponents, as well as the configuration of those components, rather
than purely holistically. A great deal of research is ongoing in the
areas of face recognition, detection, memory, the other-race effect
and the effect of experience on face perception, critical features for
recognition, and social evaluation of faces [Oruc et al. 2019].

Since particular areas of the face are important for the recog-
nition of emotion [Smith et al. 2005], different action units could
potentially be more salient than others. The evidence supporting
this suggests that specialised areas exist in the brain (region pSTS)
for the perception of action units. This could indicate that action
units are a necessary precursor to categorization of emotion [Srini-
vasan et al. 2016]. In addition, particular action units are responsible
for the correct recognition of an emotion [Wegrzyn et al. 2017].

There were also studies which used the information about in-
dividual action units to generate synthetic expressions. A gradual
activation of specific action units resulted in detection of an ex-
pression [Yu et al. 2012]. Reverse engineering expressions based on
perceptual relevance helped with improved facial recognition in ar-
tificial faces [Chen et al. 2018]. There is enough evidence to suggest
that action units alone have a perceptually significant impact on
emotion categorisation. However, it is unknown if certain action
units are more salient than others because they are associated with
a particular emotional expression.

While the mouth is understandably a significantly attended to
area due to its importance for emotional expression and communica-
tion [Nusseck et al. 2008] and its size relative to other facial features,
the eyes and eyebrows can also be considered highly important
despite their considerably smaller size. Eyebrows are integral for
emotional and conversational signals [Ekman 1979], and can alter
the perception of the eyes [Matsushita et al. 2015], however they
are important in their own right for face recognition [Sadr et al.
2003] and not just in relation to how they change the perception of
eyes.

While there has been much research in the area of Psychology
on perception of the human face, these results are rarely utilized
in Computer Graphics to improve the quality or computation
of facial animation for real-time applications where resources are
limited. The current state of the art for high quality real-time facial
animation is blendshape animation [Lewis et al. 2014]. There is
currently no consensus on what blendshapes a rig should contain,
with the decision being left entirely to the artist. One solution is to
use the Action Units from the Facial Action Coding System [Ekman
and Friesen 1978a]. In theory, FACS breaks down facial expressions
to their most basic components, making it a useful guideline for
blendshape creation.

Optimisation of blendshape animation can be done in a few ways.
Reducing mesh complexity is one method [Garland and Heckbert
1997], however this causes correspondence issues between shapes.
The animation itself can be optimised by passing blendshapes [Lo-
rach 2007] and animation to the GPU, and using GPGPU meth-
ods [Costigan et al. 2016]. The most relevant optimisation method
for this paper would be blendshape reduction, either removing
blendshapes from a rig or from an animation. Naturally, this would
reduce the expressivity of a rig and reduce the quality of animations,
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so identifying salient blendshapes as we attempt to do in this work
is important.

Mesh optimisations in graphics have traditionally been assessed
using error metrics, which are used to measure dissimilarity be-
tween ground-truth geometry and geometry after undergoing sim-
plification, watermarking, or lossy compression, with the goal of
avoiding perceptible differences. The types of metrics used are view-
dependent and view-independent, or image-based and geometry-
based (see overview by Corsini et al. [2013]). We are interested if
these metrics can be used in face-geometry perception. In the con-
text of facial animation, Deng et al. [2008] used a similar approach
to ours by bridging objective facial motion patterns with subjective
perceptual outcomes to predict the emotional fidelity of expressive
facial animations.

3 STIMULI CREATION

We first acquired a high-end photogrammetry-scanned template
model, created by Eisko!, a leading Digital Double company. The
character had over 200 blendshapes, inspired by the FACS [Ekman
and Friesen 1978b] with additional shapes for emotion and speech.
Our experiment characters were a set of 6 high-resolution scanned
neutral faces from 3D Scan Store?, including 2 characters of each
Asian, Black, and White race. Within each race group, there was 1
female and 1 male character.

3.1 Blendshape Transfer

In order to obtain a range of expressions for each of our experiment
characters, we used the Russian 3D Scanner® Wrap 3.4 to transfer
the topology of our template model to each of the neutral charac-
ters, using some feature points as guidance so that the semantics
of the topology remained the same. We then used this wrapped
mesh to warp the blendshapes of our template model to the experi-
ment characters, thereby creating 6 new character rigs with equal
topology and blendshapes. We chose not to include any hair on the
characters as we are exclusively interested in facial features and
wanted to avoid distracting elements.

3.2 Action Unit Selection

We carefully chose 11 blendshapes from the character’s set of 200
for the experiment (see Figure 1). The AUs chosen are those which
are important for emotion (AUs 2, 4, 5, 12, 15, 26, 38) [Wegrzyn et al.
2017], speech (AUs 18, 26) [Meng et al. 2018], and those necessary
for realistic and natural motion (AU 43) [Itti et al. 2003]. The cheeks
have also been found to be important for facial recognition [Busso
et al. 2004], so in order to fully cover potentially important features
we also included cheek AUs 34 and 35. We also attempted to include
opposite movements in each area, e.g., smile and frown.

3.3 Activation Levels

We are interested in whether the increase in onset of an AU linearly
affects its perceptual importance, or whether there is a point at
which the AU becomes more noticeable. For this reason, we inves-
tigate each AU at a number of different levels of activation. For

Uhttps://www.eisko.com/
Zhttps://www.3dscanstore.com/3d-head-models/
3https://www.russian3dscanner.com/
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(a) Neutral  (b) Eyebrows Up (c) Frown (d) Eyes Opened
(e) Smile (f) Mouth (g) Lips (h) Mouth
Lips Closed Frown Protrude Open
(i) Cheeks (j) Cheek (k) Nostrils (1) Eyes
Puffed Inhaled Dilated Closed

Figure 1: The blendshape set used in our experiment, shown
on the Asian Female character at full activation (1.0).

each of these expressions, we show 5 activation levels: 0.2, 0.4, 0.6,
0.8, 1.0, with 1.0 being the maximum activation of that expression
performed by the actor during the scanning process. In terms of
blendshapes, this is simply a linear interpolation from the neutral
face to the blendshape, with 1.0 being the fully activated expression
(e.g., eyes fully closed) and each intermediate step being a transition
from neutral to that expression.

4 PERCEPTUAL EXPERIMENT

We chose to develop a real-time experiment system in Unreal En-
gine 4 for flexibility and so that we could utilize pre-built advanced
lighting and shading for realistic virtual character visualisation. For
each trial of the experiment, we displayed the Neutral expression
on the left and the stimulus on the right, and asked the participants
to answer “How different are the expressions?” using a slider. The
slider ranged from 1 defined as “No Difference” to 9 defined as
“Extremely Different”. Participants were aware that the left image
was always neutral. After each trial, a 1 second focus cross was
displayed. We chose the Likert scale instead of a two-alternative
forced-choice paradigm, in order to determine the relative saliency
of AUs and activation levels, rather than simply whether the activa-
tion levels were noticed or not. Participants were asked to answer
as quickly and accurately as possible.

At the beginning of the experiment, participants conducted a
training session, where they completed 11 trials showing the full
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activated blendshapes on the template character, which was not
used in the main experiment in order to calibrate participants to the
most extreme examples of each AU. Three hundred and sixty trials
were shown to participants in random order, 12 AUs x 5 activation
levels x 6 characters.

4.1 Participants

Twenty participants volunteered for the experiment (3 female, 16
male, 1 prefer not to answer; 8 were in the age range 18-27, 10 in
28-37, and 2 in 38-47). All reported medium or high familiarity with
computer graphics and video games. As the experiment characters
varied in race, and there is a perceptual effect of one’s own race
and perception of other races [Lindsay et al. 1991], we asked the
participants to disclose their race (5 Asian, 13 White, 0 Black, 2
Other).

4.2 Results

We ran a 4-way repeated measures ANOVA on the perceptual
difference results with the within factors Sex, Race, Action Unit,
and Activation Level. Due to the imbalance between participant
race and sex groups, we did not include these between-groups
factors in the analysis. The ANOVA results can be seen in Table 1.
We ran post-hoc analysis using Tukey’s HSD tests throughout.

Table 1: ANOVA interactions with dependent variable “Dif-
ference” from the perceptual results. (AU = Action Unit,
* represents significant p-values, F* stand for Greenhouse-
Geisser correction for violations of sphericity). Effects sizes
are reported in the last column (1712,)

Factor F(DFn, DFd) = F-value | p-value r]f,
Sex F(1, 19) = 1.727 02| 0.08
Race F(2, 38) = 4.192 0.02* | 0.18
Action Unit F*(2.93, 55.58) = 123.8 0.00* | 0.86
Activation F*(1.21, 22.90) = 158.2 0.00* | 0.89
Sex-Race F(2,38) = 7.826 0.001* | 0.29
Sex-AU F(11, 209) = 2.99 0.001* | 0.14
Race-AU F(22, 418) = 6.885 0.00* | 0.27
Sex-Activation F(4, 76) = 2.887 0.03* | 0.13
Race-Activation F(8, 152) = 1.581 0.14 | 0.08
AU-Activation F(44, 836) = 19.29 0.00* | 0.50
Sex-Race-AU F*(6.73, 127.86) = 5.301 0.00* | 0.22
Sex-Race-Activation F(8, 152) = 2.031 0.046* | 0.10
Sex-AU-Activation F(44, 836) = 0.979 0.5 | 0.05
Race-AU-Activation F(88, 1672) = 1.592 0.001* | 0.07
Sex-Race-AU-Activation F(88, 1672) = 1.68 0.00* | 0.08

4.2.1 Character Sex & Race. There was no main effect of the char-
acter Sex. However, we found a main effect of character Race, where
shape differences were less perceptible for Black characters over-
all than for Asian characters (p < 0.02). An interaction between
Race and Sex gave further insight that shape differences were more
perceptible for the Asian Female character than other characters
except for the White Male (p < 0.03 for all). There was an interac-
tion between Race and AU, which showed the Frown and Cheeks
Puffed (p < 0.02) were the main AUs that were less perceptible on
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Table 2: The AUs ordered by average perceptual difference.

AU Name Difference AU Name Difference
Mouth Open 5.97 Eyes Opened 3.15
Eyes Closed 5.2 Cheeks Puffed 2.77

Smile Lips Closed 4.18 Mouth Frown 2.56
Eyebrows Up 3.56 Frown 2.22
Lips Protude 3.55 Nostrils Dilated 1.78

Cheek Inhaled 3.24 Neutral 1.42
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Figure 2: Main effect of AU from our experiment.

Black characters. These small differences across Race could have
been due to our predominantly European and Asian participant
pool [Lindsay et al. 1991; Walker and Tanaka 2003] or possibly due
to differences in perception due to stand-out or distracting features
in the rendering of their faces.

4.2.2  Activation Level. A main effect of Activation Level showed
a significant increase in perceived differences as the activation in-
creased, as expected. There was no difference across all characters
and AUs at the lowest Activation Level of 0.2. However, some char-
acters were rated as relatively more different at higher Activation
Levels. Specifically, Asian Female at 0.6 Activation Level was rated
similarly to the AUs of some characters at the 0.8 level.

4.2.3 Action Units. Mouth Open, Eyes Closed, and Smile Lips
Closed appeared to have a higher perceptual effect since the per-
ceived differences were significantly higher when compared to all
other AUs (p < 0.02). Nostrils Dilated had the smallest effect since
it was not significantly different from the Neutral. See Figure 2 and
Table 2.

Further interactions showed that Mouth Open was significantly
more different than most other shapes (p < 0.005). Eyes Closed
were also prominent on some characters, while Nostrils Dilated
and Frown were not different from Neutral, for some characters.

Mouth Frown was the only AU to be rated significantly differ-
ently between the sexes (p < 0.05), with the female characters
being rated as more different. This could potentially be related to
the inverse effect of gender stereotyping increasing saliency of
unexpected emotions seen in previous work (i.e., that females are
perceived as more angry than males) [Hess et al. 2004]. We also
found interactions with Race, as well as interactions with Race and
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Sex (see Table 1). While we observed many significant differences
from post-hoc tests, we did not observe any meaningful patterns.

5 ERROR METRICS

We now move to investigating the relationship between numerical
error metrics and perception. We first record the error metric scores
for each activation level of each AU, for each character. Each metric
is calculated between the neutral face and the activated AU.

5.1 Geometric Error Metrics

Root-Mean-Square. We calculate the RMS error between two
meshes by getting the sum across all vertices n € N of the square
root of the average of the square of each (x, y, z) component of each
delta vertex 60y, i.e. the difference between that vertex position in
the blendshape mesh and the same vertex in the neutral mesh, as
described in Equation 1.

INEEEEESY
SrMS = ~805 86, = — > 1156l (1)
n=1 3 \/§ n=1

Spatio-Temporal Edge Difference. STED is a perceptual metric for
dynamic meshes which focuses on local and relative changes of
edge length by measuring the standard deviation of relative edge
length around each vertex, rather than global mesh difference. The
model parameters have been tuned such that its results best match
those of the perceptual experiment, described in the paper [Vasa
and Skala 2010].

5.2 Image Error Metrics

To calculate our image metric results, we took screenshots of each
stimulus and cropped out a large amount of the empty space sur-
rounding each head. MSE and SSIM were calculated using scikit-
image [van der Walt et al. 2014].

Mean-Squared-Error. We calculate MSE by getting the per-pixel
average error between images A and B, where N is the total number
of pixels in the image, and ¥4 is the n'” pixel of image A.

N
1 A =B
OMSE = N r;f,? — Xp (2

Structural Similarity Index Metric. SSIM is calculated as defined
by Wang et al. [2004] and using the default suggested parameters.
It is designed to model the response of the human vision system
and should correlate better to our perceptual results than standard
MSE. As this metric measures similarity rather than difference, we
invert this metric (1-SSIM) for better comparison with our other
metrics where appropriate.

6 MODEL FIT

To find the best model describing the relationship between percep-
tual results and the calculated errors, several Generalised Linear
Models were tested and compared using Akaike Information Cri-
terion (AIC) that combines the log-likehood (best fit) penalised by
the model complexity (as measured by the number of parameters to
estimate in the model) for selection of the best model [Dobson and
Barnett 2008]. The model with the lowest AIC is deemed the best
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model (amongst those tested) for explaining the observations. A
x? test for the deviance is then used to assess if this selected ‘best’
model is actually a good model for explaining the data [Dobson and
Barnett 2008]. Poisson and Gaussian distributions were tested in
combination with several link functions (identity, log, and square
root). We found that the Poisson distribution captures the discrete
nature of the perceived difference best and provides lower AICs
than with the Gaussian distribution in the many models tested
including the ones shown in Table 3.

Table 3: Model comparison with AIC| to explain the per-
ceived difference (columns 2 and 3). Best link function re-
ported between Identity (Id), log and sqrt. The lowest AIC
for each metric are displayed in bold. Deviances (all with
Poisson distribution and best link function) for models are
shown column 4. A good model has a deviance in the inter-
val [0; Xg_95] with )(395 reported in column 5.

Model Gaussian Poisson Deviance )(%5
STED 28704 (I1d) 27346 (1d) 6551 7396
STED*AU 24850 (sqrt) 24680 (sqrt) 3844 7374

STED*AU+Race:Sex 24832 (sqrt) 24670 (sqrt) 3823 7368
STED*AU"*Sex*Race 24781 (sqrt) 24742 (sqrt) 3676 7252

RMS 27965 (Id) 26903 (Id) 6109 739
RMS*AU 24878 (Id) 24688 (Id) 3852 7374
RMS*AU+Race:Sex 24853 (Id) 24673 (Id) 3827 7368
RMS*AU*Sex*Race 24810 (Id) 24749 (Id) 3683 7252
SSIM 29534 (Id) 28075 (Id) 7280 7396
SSIM*AU 26287 (Id) 25591 (Id) 4753 7374
SSIM*AU+Race:Sex 25505 (sqrt) 25112 (log) 4264 7368
SSIM*AU*Sex*Race 24799 (sqrt) 24758 (log) 3680 7252
MSE 29920 (Id) 28678 (Id) 7884 7396
MSE*AU 26940 (log) 26120 (log) 5277 7374
MSE*AU+Race:Sex 25933 (Id) 25384 (Id) 4536 7368
MSE*AU*Sex*Race 24839 (Id) 24776 (Id) 3698 7252

6.1 Variable selection with ANOVA

The variables used to design the models shown in Table 3 have
been chosen using ANOVA. Table 4 in the Supplemental Material
shows the ANOVA when fitting a linear regression to explain the
Perceived Difference (response variable) with explanatory variables
RMS, AU and the 6 experiment characters (captured with variables
Sex and Race). As can be seen by the high values for Sum Sq., most
of the perceived difference is explained using RMS and AU with
their interactions (variable highlighted in green in Table 4). Simi-
larly, Table 5 in the Supplemental Material shows the ANOVA with
explanatory variables STED, AU and the 6 virtual characters used
and the high values for Sum Sq. imply that most of the perceived
difference is explained using STED and AU with their interactions
(variable highlighted in green Table 5). These results imply the re-
lationship between the perceived values and the geometry metrics
are AU-specific, and using an AU-specific model is necessary for
prediction. ANOVA tables for image metrics are shown likewise in
Table 6 and 7 in the Supplemental Material. We note that MSE and
SSIM alone have less explanatory power than RMS and STED vari-
ables (see lower Sum Sq. in the tables). These ANOVA tables explain
the comparison shown in Table 3 where AICs of models shown are
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either using only the metrics (Metric=<STED/RMS/SSIM/MSE), the
full models (Metric*AU*Sex*Race), the ones considering interactions
between metrics and blendshapes (Metric*AU), and the models that
include Sex and Race as additional variables.

6.2 Best Metric?

In the geometry domain, all fitted models are good models as per
their deviance reported in Table 3 [Dobson and Barnett 2008]. How-
ever, we note that the perceptual metric STED achieves a lower
AIC (marginally) in comparison to the standard metric RMS (see
Table 3). Similarly, in the image domain, the perceptual metric SSIM
achieves a lower AIC (marginally) in comparison to the standard
metric MSE (Table 3). All fitted models are good models as per their
deviance reported in Table 3 with the exception of the simplest
one using only MSE. This shows that MSE has less explanatory
power than SSIM for explaining the perceived difference, which
is not surprising since it does not account for structural fidelity
of the image. Figure 3 in the Supplemental Material illustrates the
different models used.

We found that the perceptual image metric SSIM (measured in a
2D projective space) is not as powerful as even the standard geom-
etry metric RMS (measuring the deformation in 3D) for explaining
the perceived difference.

This is interesting, as our participants viewed the stimuli as
a 2D projection, however their recorded perceived difference is
better explained by geometric metrics computed from 3D meshes.
A potential explanation may be that because faces are very familiar
objects, a 3D representation is automatically imagined or inferred
by participants when viewing 2D facial images. Despite this, having
a model fitted using image metrics can be useful for prediction of
perceived difference when geometry metrics are not available (e.g.,
for facial photograph comparisons).

7 DISCUSSION

In this paper, we presented the first experiment on perceptibility of
facial action units, and the relationship with numerical metrics de-
scribing the displacements. Our main contribution is our perceptual
models, which will provide a starting point for the development of
a universal perceptual error metric suitable for human faces®.

Additionally, we found that some facial action units were more
perceptually noticeable than others, and provide a table showing
the order of importance (Table 2). This perceptual ordering will
be useful for game developers for tasks that require an order of
blendshapes, such as level-of-detail blendshape reduction meth-
ods [Costigan et al. 2016], or example creation for blendshape trans-
fer [Carrigan et al. 2020]. By identifying and removing blendshapes
of lower visual saliency, which equates to simply removing rows
from the blendshape matrix, we can save both memory and compu-
tation required.

In general, we found an equally-spaced linear relationship be-
tween perceptual difference and activation level. This implies that
future experiments can focus solely on the highest activation level
(1.0) of an AU.

“Data and R code used for this study are shared at https://github.com/Roznn/facial-
blendshapes allowing others to build on our data investigating a larger range of faces,
viewpoints, and facial action units.
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In terms of the error metrics, one of our aims was to determine
if existing standard and perceptual geometry- and image-based
error metrics could predict the perceptibility of facial action units
when compared to the neutral face. We did not find this to be the
case, as our statistical models showed that each AU had a different
relationship with the metrics (see different slopes in Supplemental
Material, Figure 3). It is interesting how no single geometric or
image-based metric alone was able to capture well the perceptual
difference as seen by a human, even by the metrics which are based
on the human vision system. This implies an AU-specific perception
that must be taken into account when measuring the perceptual
impact of changes in facial expressions, which is not catered for by
the current metrics used alone in the models.

Interestingly, we found that image metrics were worse at pre-
dicting perceived differences than geometry metrics, even though
the viewers only viewed the 3D geometry from a single viewpoint.
This implies that humans have a strong ability to infer 3D shape
of faces from a 2D image, and that the pixel-based differences in
the images do not capture these differences as well as 3D geometry
comparisons. This is unlikely to hold true for different viewpoints
besides the front view, but will be interesting to investigate in future
work.

In this work, we focused on realistic virtual human faces, so it
is not clear if our results would generalize to other character rigs
or even real faces. It would be interesting to investigate stylized
or cartoon character rigs in future work. Also, as this is an initial
study into investigating the perceived importance of facial AUs,
we limited our study to static expressions of single AUs. Naturally,
perception of animated faces with combined expressions would be
more complicated, particularly since specific AUs are important for
the perception of emotions (e.g., AU 7 Lid Tightener for anger [We-
grzyn et al. 2017]). It might be the case that even if these AUs are not
perceptually important according to our approach, removing them
from a rig might alter the interpretation of emotion of a virtual
human, which we will study in future work.
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Investigating perceptually based models to predict importance of facial blendshapes

SUPPLEMENTAL MATERIAL

Df | Sum Sq | MeanSq | Fvalue | Pr(>F)
RMS 1 | 11125.30 | 1112530 | 6174.53 0.00
AU 11 5114.03 464.91 258.02 0.00
Sex 3.56 3.55 1.97 0.16
Race 2 2491 12.45 6.91 0.001
RMS:AU 10 2103.48 210.35 116.74 0.00
RMS:Sex 1 7.98 7.98 443 0.035
AU:Sex 11 30.06 2.73 1.52 0.118
RMS:Race 2 21.93 10.96 6.09 0.002
AU:Race 22 132.01 6.00 3.33 0.00
Sex:Race 2 36.30 18.15 10.07 0.00
RMS:AU:Sex 10 10.55 1.05 0.59 0.827
RMS:AU:Race 20 63.22 3.16 1.75 0.02
RMS:Sex:Race 2 6.87 3.43 1.91 0.149
AU:Sex:Race 22 140.94 6.41 3.56 0.00
RMS:AU:Sex:Race 20 58.88 2.94 1.63 0.037
Residuals 7062 | 12724.35 1.80 NA NA

Table 4: ANOVA interactions with dependent variable “Dif-
ference” and within factors RMS, Sex, Race and AU.

MIG 20, October 1618, 2020, South Carolina, USA

Df Sum Sq | Mean Sq | Fvalue | Pr(>F)
SSIM 1 6135.88 6135.88 | 3393.49 0.00
AU 11 8500.78 772.8 427.4 0.00
Sex 1 204.14 204.14 1129 0.00
Race 2 615.25 307.62 170.13 0.00
SSIM:AU 11 92491 84.08 46.5 0.00
SSIM:Sex 1 23.57 23.57 13.03 0.00
AU:Sex 11 405.87 36.9 20.41 0.00
SSIM:Race 2 113.56 56.78 314 0.00
AU:Race 22 484.94 22.04 12.19 0.00
Sex:Race 2 645.41 322.7 178.47 0.00
SSIM:AU:Sex 11 97.8 8.89 4.92 0.00
SSIM:AU:Race 22 148.01 6.78 3.72 0.00
SSIM:Sex:Race 2 148.00 74.00 40.93 0.00
AU:Sex:Race 22 297.97 13.54 7.49 0.00
SSIM:AU:Sex:Race 22 100.09 4.55 2.52 0.00
Residuals 7056 | 12758.19241 | 1.808134 NA NA

Table 6: ANOVA interactions with dependent variable “Dif-
ference” and within factors SSIM, Sex, Race and AU.

Df | Sum Sq Mean Sq | Fvalue | Pr(>F)

MSE 1 4736.38 | 4736.3879475 | 2620.34 0.00

AU 11 8523.97 774.9068976 428.71 0.00

Race 2 599.75 299.8756275 165.90 0.00

Df | SumSq | MeanSq | Fvalue | Pr(>F) Sex 1 33.00 0.3300257 0.18 0.67

STED 1 8909.20 8909.20 | 4959.53 0.00 MSE:AU 11 2162.63 196.6032101 108.77 0.00

AU 11 8879.79 807.25 449.38 0.00 MSE:Race 2 133.16 66.5801372 36.83 0.00

Sex 1 0.6 0.6 0.33 0.563 AU:Race 22 1098.38 49.9265635 27.62 0.00

Race 2 27.51 13.76 7.66 0.00 MSE:Sex 1 137.96 137.9690345 76.33 0.00

STED:AU 10 591.92 59.19 32.95 0.00 AU:Sex 11 126.47 11.4976458 6.36 0.00

STED:Sex 1 10.49 10.49 5.84 0.016 Race:Sex 2 266.21 133.1057120 73.64 0.00

AU:Sex 11 34.24 3.11 1.73 0.060 MSE:AU:Race 22 547.68 24.8945964 13.77 0.00

STED:Race 2 16.42 8.21 4.57 0.010 MSE:AU:Sex 11 136.11 12.3736730 6.85 0.00

AU:Race 22 116.68 5.30 2.95 0.00 MSE:Race:Sex 2 25.38 12.6901141 7.02 0.00

Sex:Race 2 26.00 13.00 7.24 0.00 AU:Race:Sex 22 123.35 5.6070706 3.10 0.00

STED:AU:Sex 10 9.72 0.97 0.54 0.862 MSE:AU:Race:Sex 22 232.52 10.5693524 5.85 0.00

STED:AU:Race 20 65.08 3.25 1.81 0.015 Residuals 7056 | 12754.04 1.8075454 NA NA

STED:Sex:Race 2 5.76 2.88 1.60 | 0.201 Table 7: ANOVA interactions with dependent variable “Dif-

AU:Sex:Race 22 165.56 7.53 419 0.00 ference” and within factors MSE, Sex, Race and AU.

STED:AU:Sex:Race 20 59.37 2.97 1.65 0.034
Residuals 7062 | 12686.04 1.80 NA NA

Table 5: ANOVA interactions with dependent variable “Dif-
ference” and within factors STED, Sex, Race and AU.
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Figure 3: Model-fit for perceived difference using geometry metrics RMS (a-b), STED (c-d), and image metrics MSE (e-f) and
SSIM (g-h) as per models listed in Table 3. The 6 virtual characters behave in a similar fashion when using STED (c) and are
well captured with the simpler model (d) corresponding to the average model fit across the 6 virtual characters for each AU.



