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A B S T R A C T

Blendshape facial rigs are used extensively in the industry for facial animation of
virtual humans. However, storing and manipulating large numbers of facial meshes
(blendshapes) is costly in terms of memory and computation for gaming applications.
Blendshape rigs are comprised of sets of semantically-meaningful expressions, which
govern how expressive the character will be, often based on Action Units from the Facial
Action Coding System (FACS). However, the relative perceptual importance of blend-
shapes has not yet been investigated. Research in Psychology and Neuroscience has
shown that our brains process faces differently than other objects so we postulate that
the perception of facial expressions will be feature-dependent rather than based purely
on the amount of movement required to make the expression. Therefore, we believe that
perception of blendshape visibility will not be reliably predicted by numerical calcula-
tions of the difference between the expression and the neutral mesh. In this paper, we
explore the noticeability of blendshapes under different activation levels, and present
new perceptually-based models to predict perceptual importance of blendshapes. The
models predict visibility based on commonly-used geometry and image-based metrics.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Virtual humans are becoming extremely popular in recent2

years for a range of diverse applications, such as video games,3

human-computer interfaces [1], live streaming, virtual reality4

entertainment, and personalized training [2]. With the increase5

in interactions with virtual humans comes the need for a greater6

understanding of how users perceive them, in particular their7

faces.8

The perception of human faces and facial expressions is a9

much studied area in Psychology research. For virtual char-10

acters, facial expressions are generally created by animating11
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blendshape rigs [3] based on FACS action units (AUs) [4], how- 12

ever these rigs are computationally expensive for real-time ap- 13

plications. The question of importance of blendshapes is there- 14

fore of great interest to computer games and other real-time ap- 15

plications, with the aim of reducing the number of blendshapes 16

needed for animating a rig [5], or prioritising which blend- 17

shapes to include in expressions for example-based blendshape 18

rig creation algorithms [6, 7], or to ensure facial expressions in 19

rigs are being activated enough to be perceived clearly by the 20

viewer. Additionally, algorithms that create or alter facial ge- 21

ometry are usually evaluated against ground-truth facial meshes 22

using standard geometry error metrics [7], however, we postu- 23

late that standard error-metrics may not be sufficient to deter- 24

mine how perceptually different the results are to the ground- 25

truth. 26

Due to the nature of how facial perception it is a special form 27
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of perception that humans are particularly attuned to [8, 9, 10],1

we expect that differences in perception of facial action units2

will not align with the magnitude of displacement on the mesh3

caused by the expression. We hypothesise that small displace-4

ments in salient regions (e.g., eyelids) will be more perceptu-5

ally noticeable than larger displacements in less salient regions6

(e.g., puffing of cheeks), which may not be accurately reflected7

by the standard geometric and image error metrics. We also ex-8

pect that due to social conditioning, sex and race will affect the9

perception of facial action units. It appears that female and male10

faces are observed differently, because the type and expressivity11

of particular emotions were found to be sex specific [11, 12, 13].12

In addition, it has been shown that people perceive faces of their13

own race differently than other races in certain tasks such as fa-14

cial recognition [14], so it is possible that perception of action15

units will differ across different race groups.16

In this paper, we investigate the perceptual impact of a care-17

fully selected range of expressive action units at varying activa-18

tion levels across a number of characters of different race and19

sex. We then compare our qualitative perceptual results to quan-20

titative metrics in order to determine whether the perceptual ef-21

fect can be predicted directly. Geometric and image-based error22

metrics for triangle meshes are traditionally used for predicting23

mesh errors such as watermarking, simplification or lossy com-24

pression. However, we aim to determine if our question of per-25

ceived action unit importance can be predicted by simply cal-26

culating the error between the neutral pose and the expression27

blendshape, using common image and geometry error metrics.28

We investigate both standard and perceptually-based metrics,29

calculated from either the 3D geometry or the rendered 2D im-30

age, and perform linear regression analysis to determine if any31

of them can predict facial expression importance well, or if a32

new perceptual metric specific to facial expressions should be33

developed.34

We address a number of questions, such as:35

• Are certain facial action units more perceptually notice-36

able than others?37

• Does a linear increase in activation of expressions (geom-38

etry alterations) result in a linear perceptual response for39

all action units equally?40

• Are the same facial action units consistently noticeable41

across faces of different sex and race?42

• Can we predict the saliency of facial action units using43

numerical error metrics, and is there a benefit to using ex-44

isting perceptually based metrics?45

• If metrics can predict saliency of facial action units, are 3D46

geometry metrics better than 2D image-based metrics?47

Additionally, we tested several Generalised Linear Models in48

order to describe the relationship between our perceptual results49

and calculated errors. Our findings could be used for optimisa-50

tion of blendshape rigs through blendshape reduction for facial51

animation in games. By identifying and removing blendshapes52

of lower visual saliency, we can save both memory and com-53

putation required. Additionally, our perceptual model could be54

used to guide real-time facial animation systems to ensure vir- 55

tual agents are expressing perceptible expressions to a precise 56

level (e.g., medium-level smile, etc.). 57

In this paper, we extend Carrigan et al. [15] with an online 58

experiment with a more diverse pool of participants in terms 59

of gender and race (Section 5) and a cross-validation test to 60

assess how accurate our models are for prediction of unseen 61

data (Section 8). 62

2. Related Work 63

Our interdisciplinary research relates to work in the areas of 64

Psychology, Computer Vision and Computer Graphics, which 65

we will discuss in this section. 66

Face perception is a very active area of study in Psychology, 67

as humans have been shown to perceive faces in a different way 68

to regular perception [8, 9, 10]. Work by Schwaninger et al. 69

shows that faces are processed both in terms of their compo- 70

nents as well as the configuration of those components [16, 17] 71

rather than purely holistically. 72

As well, the different areas of the face have been shown to be 73

important in terms of speech and emotion perception [18, 19]. 74

A great deal of research is ongoing in the areas of face recogni- 75

tion, detection, memory, the other-race effect and the effect of 76

experience on face perception, critical features for recognition, 77

and social evaluation of faces [20]. 78

Another interesting property of face perception is that people 79

perceive faces of their own race differently to faces of other 80

races, with studies showing an own-race recognition mem- 81

ory advantage [21], as well as an own-race encoding advan- 82

tage [22]. One explanation for this phenomenon is that people 83

have more exposure to people of their own race, and there is 84

evidence that experience can mitigate these other-group effects 85

even if the experience is acquired during adulthood [23]. There 86

is also a neurological basis for perceptual differences of faces 87

based on both shape, pigment and internal features [24, 14]. 88

Social conditioning appears to play a role in face perception of 89

different sexes as well. There are sex differences in the readi- 90

ness to express certain emotions - males tend to more readily 91

express anger [11], while females more frequently express fear 92

and sadness [12]. Therefore, a female expression of anger can 93

actually be perceived as more intense than a male expressing 94

the same intensity of anger, due to the violation of viewers’ 95

expectations [25, 13]. For these reasons, we include a diverse 96

set of characters in our experiment, ranging in race and sex, to 97

generalise our results. 98

In terms of perception of emotion, it has been shown that 99

not all emotions are perceived equally. Happiness is most 100

quickly recognised and least often confused with other emo- 101

tions [26, 27, 28], while angry faces are more easily detected 102

within a crowd [29]. For each emotional expression, specific 103

parts of the expression appear to be more important for the clas- 104

sification of an emotion [30]. Since particular areas of the face 105

are important for the recognition of emotion, different action 106

units could potentially be more salient than others. The ev- 107

idence supporting this suggests that specialised areas exist in 108

the brain (region pSTS) for the perception of action units. This 109
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could indicate that action units are a necessary precursor to cat-1

egorization of emotion [31]. In addition, particular action units2

are responsible for the correct recognition of an emotion [32]:3

for happiness, this is the lip corner puller and parting of lips;4

for disgust, the most important are the raising and plucking of5

the lip. For fear, surprise, anger and sadness the regions around6

the eyes have the highest weights, with the lid raiser (exposing7

the sclera of the eyes) important for fear, and the lid tightener8

significantly most important for anger. Brows are important for9

sadness and both eyes and mouth contribute significantly to the10

recognition of surprise.11

There were also studies which used the information about in-12

dividual action units to generate synthetic expressions. A grad-13

ual activation of specific action units resulted in detection of14

an expression [33]. Reverse engineering expressions based on15

perceptual relevance helped with improved facial recognition16

in artificial faces [34]. There is enough evidence to suggest17

that action units alone have a perceptually significant impact18

on emotion categorisation. However, it is unknown if certain19

action units are more salient than others because they are asso-20

ciated with a particular emotional expression.21

While the mouth is understandably a significantly attended22

to area due to its importance for emotional expression and com-23

munication [35, 36] and its size relative to other facial features,24

the eyes and eyebrows can also be considered highly important25

despite their considerably smaller size. Eyebrows are integral26

for emotional and conversational signals [37], and can alter the27

perception of the eyes [38], however they are important in their28

own right for face recognition [39] and not just in relation to29

how they change the perception of eyes.30

In the field of Computer Vision, the recognition of Action31

Units from FACS has been explored using facial component32

models, with AUs being recognised with greater than 95% ac-33

curacy [40]. Computer recognition of AUs is interesting to our34

work as it allows us to see the similarities and differences be-35

tween human perception and computer vision. Most AUs were36

recognised correctly, with incorrect recognition being attributed37

to either an additional similar AU being recognised (e.g. both38

Inner and Outer Brow Raiser being recognised when only one39

was present), or a similar AU being incorrectly recognised (e.g.40

Jaw Drop being recognised instead of Lips Part). It is noted that41

one of the pairs of AUs that were confused, Cheek Raiser and42

Lid Tightener, are confused by humans as well [41]. Recog-43

nition of AUs, as well as automatic recognition of intensity44

of AUs, has also been accomplished using pure deep learn-45

ing methods [42]. The relative importance of facial features46

for recognition of emotion has been investigated by Kumar et47

al. [43] who automatically recognized the six basic emotions48

viewed at several different angle using a multi-level classifica-49

tion model and only extracting features from relevant parts of50

the face and then separating facial expressions into three cat-51

egories: lip, lip-eye, lip-eye-forehead. This method allowed52

for a recognition rate of 95.51%, outperforming state-of-the-53

art multi-view learning methods, showing the benefit of a seg-54

mented rather than holistic view of facial perception.55

While there has been much research in the area of Psychol-56

ogy on perception of the human face, these results are rarely57

(a) Neutral (b) Eyebrows Up (c) Frown (d) Eyes Opened

(e) Smile
Lips Closed

(f) Mouth
Frown

(g) Lips
Protrude

(h) Mouth
Open

(i) Cheeks
Puffed

(j) Cheek
Inhaled

(k) Nostrils
Dilated

(l) Eyes
Closed

1

Fig. 1: The blendshapes set used in our experiment, shown on the Asian Female
character at full activation (1.0).

utilized in Computer Graphics to improve the quality or com- 58

putation of facial animation for real-time applications where re- 59

sources are limited. The current state of the art for high qual- 60

ity real-time facial animation is blendshape animation [3]. A 61

blendshape is a mesh representing a certain shape, typically a 62

simple movement like an eye blink or mouth open shape. An- 63

imation is achieved by linearly combining a number of these 64

blendshapes with the neutral face to create an expression. There 65

is currently no consensus on what blendshapes a rig should con- 66

tain, with the decision being left entirely to the artist. One so- 67

lution is to use the Action Units from the Facial Action Coding 68

System [44]. In theory, FACS breaks down facial expressions 69

to their most basic components, making it a useful guideline for 70

blendshape creation. 71

Blendshapes can be costly to create, however, they can be 72

transferred from a template rig containing the desired shapes 73

to a target character rig using Deformation Transfer [45]. The 74

quality and personalisation of these blendshapes can be im- 75

proved by providing examples of the target character face [46]. 76

Similar to the question of which blendshapes should be in- 77

cluded in a rig, there is no consensus on which examples should 78

be provided to best improve a rig. Initial perceptual research has 79

been done in this area [6] as well as a first attempt at creating an 80

example suggestion algorithm [7]. Another method for person- 81

alising rigs is to use an actor’s performance to train an existing 82

set of blendshapes to better match the actor’s face [47]. 83

Optimisation of blendshape animation can be done in a few 84

ways. Reducing mesh complexity is one method [48], how- 85
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ever this causes correspondence issues between shapes. The1

animation itself can be optimised by passing blendshapes [49]2

and animation [50] to the GPU, and using GPGPU methods [5].3

The most relevant optimisation method for this paper would be4

blendshape reduction, either removing blendshapes from a rig5

or from an animation. Naturally, this would reduce the expres-6

sivity of a rig and reduce the quality of animations, so identify-7

ing salient blendshapes as we attempt to do in this work is im-8

portant. One area in particular where this optimisation method9

is applicable is optimisation for level of detail, where distance10

obscures the detail of the face so reduced quality is less percep-11

tible.12

Mesh optimisations in graphics have traditionally been as-13

sessed using error metrics, which are used to measure dissim-14

ilarity between ground-truth geometry and geometry after un-15

dergoing simplification, watermarking, or lossy compression,16

with the goal of avoiding perceptible differences. The types17

of metrics used are view-dependent and view-independent, or18

image-based and geometry-based (see overview by Corsini et19

al. [51]). We are interested if these metrics can be used in face-20

geometry perception.21

Root-mean-square error (RMS) is a commonly used model-22

based error metric. Similarly, mean-squared-error (MSE) is23

used for image quality measurement. However these metrics24

are quite simplistic as they do not take into account the way in25

which a model is deformed, only measure the overall difference.26

This can lead to models with the same error but wildly different27

perceptual difference. To account for this, error metrics based28

on the human vision system have been proposed.29

Of special interest to our work is the Structural Similarity In-30

dex Metric (SSIM) [52], which is a preferred image-based per-31

ceptual metric since it incorporates important perceptual phe-32

nomena such as contrast and luminance and also takes into ac-33

count the structure of objects in the scene. Also of interest is34

the Spatio-temporal Edge Difference (STED) [53], which is a35

perceptual metric for meshes that works on edges as basic prim-36

itives as opposed to vertices. In our work, we investigate error37

metrics typically used for measuring mesh optimisation for the38

purpose of identifying importance of facial blendshapes, with39

the aim of reducing computation for facial animation in games.40

3. Stimuli Creation41

We explored acquiring a range of high-resolution full-head42

meshes with semantically-matching AUs and diversity of facial43

features from open-source databases. However, to our knowl-44

edge, no such set exists, therefore we created our own data-set.45

We first acquired a high-end photogrammetry-scanned tem-46

plate model, created by Eisko1, a leading Digital Double com-47

pany. The character had over 200 blendshapes, inspired by the48

FACS [4] with additional shapes for emotion and speech. Our49

experiment characters were a set of 6 neutral faces (Fig. 2) cre-50

ated utilising high resolution scan data, from 3D Scan Store2.51

1https://www.eisko.com/
2https://www.3dscanstore.com/3d-head-models/

Fig. 2: Neutral faces of the characters used in our experiment. Left: white,
middle: black, right: asian faces. Top row shows the female faces, while the
bottom row shows the male faces.

One of the goals of this experiment was to obtain results that 52

could be generalisable across different character faces, there- 53

fore we attempted to create a diverse set of stimuli by including 54

2 characters of each Asian, Black, and White race. Within each 55

race group, there was 1 female and 1 male character. 56

3.1. Blendshape Transfer 57

In order to obtain a range of expressions for each of our ex- 58

periment characters, we used the Russian 3D Scanner3 Wrap 59

3.4 to transfer the topology of our template model to each of 60

the neutral characters, using some feature points as guidance 61

so that the semantics of the topology remained the same. We 62

then used this wrapped mesh to warp the blendshapes of our 63

template model to the experiment characters, thereby creating 6 64

new character rigs with equal topology and blendshapes. These 65

characters can be seen in Fig. 2. We chose not to include any 66

hair on the characters as we are exclusively interested in facial 67

features and wanted to avoid distracting elements. 68

3.2. Action Unit Selection 69

In order to keep the experiment from having too many vari- 70

ables, we carefully chose 11 blendshapes from the character’s 71

set of 200 for the experiment (see Fig. 1). Since our work is 72

aimed at character animation, we selected AUs that were par- 73

ticularly relevant for conversing virtual humans. AUs were 74

chosen that were previously shown to be important for emo- 75

tion (AUs 2, 4, 5, 12, 15, 26, 38 [32, 54]), speech (AUs 18, 76

26 [55], and those necessary for realistic and natural motion 77

(AU 43 [56]). The cheeks have also been found to be important 78

for facial recognition [57], so in order to fully cover potentially 79

important features we also included cheek AUs 34 and 35. We 80

also attempted to include opposite movements in each area, e.g. 81

smile and frown. 82

3https://www.russian3dscanner.com/

https://www.eisko.com/
https://www.3dscanstore.com/3d-head-models/
https://www.russian3dscanner.com/
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3.3. Activation Levels1

We are interested in whether the increase in onset of an AU2

linearly affects its perceptual importance, or whether there is a3

point at which the AU becomes more noticeable. For this rea-4

son, we investigate each AU at a number of different levels of5

activation. For each of these expressions, we show 5 activa-6

tion levels: 0.2, 0.4, 0.6, 0.8, 1.0, with 1.0 being the maximum7

activation of that expression performed by the actor during the8

scanning process. In terms of blendshapes, this is simply a lin-9

ear interpolation from the neutral face to the blendshape, with10

1.0 being the fully activated expression (e.g. eyes fully closed)11

and each intermediate step being a transition from neutral to12

that expression, e.g., 0.4 of the eyes closed expression would13

be eyes almost half closed.14

4. Experiment 1: Laboratory15

We chose to develop a real-time experiment system in Unreal16

Engine 4 for flexibility, and the fact that adjustments could be17

made easily to all characters without having to re-render a large18

set of images. Additionally, so that we could utilize pre-built19

advanced lighting and shading for realistic virtual character vi-20

sualisation. For each trial of the experiment, we displayed the21

Neutral expression on the left and the stimulus on the right, and22

asked the participants to answer “How different are the expres-23

sions?” using a slider. The slider ranged from 1 defined as “No24

Difference” to 9 defined as “Extremely Different”. Participants25

were aware that the left image was always neutral. After each26

trial, a 1 second focus cross was displayed. We chose the Likert27

scale instead of a two-alternative forced-choice paradigm, in28

order to determine the relative saliency of AUs and activation29

levels, rather than simply whether the activation levels were no-30

ticed or not. The amount of time given to view each stimulus31

was not limited, although participants were asked to answer as32

quickly and accurately as possible.33

At the beginning of the experiment, participants conducted34

a training session, where they completed 11 trials showing the35

full activated blendshapes on the template character, which was36

not used in the main experiment. The idea of the training ses-37

sion was to calibrate participants to the most extreme examples38

of each AU.39

Three hundred and sixty trials were shown to participants in40

random order, 12 AUs (including Neutral) x 5 activation levels41

× 6 characters. To avoid the experiment becoming too long, we42

used only one repetition of each character.43

4.1. Participants44

Twenty participants volunteered for the experiment (3 fe-45

male, 16 male, 1 prefer not to answer; 8 were in the age range46

18-27, 10 in 28-37, and 2 in 38-47). All reported medium47

or high familiarity with computer graphics and video games.48

As the experiment characters varied in race, and there is a49

perceptual effect of one’s own race and perception of other50

races [21, 22], we asked the participants to disclose their race51

(5 Asian, 13 White, 0 Black, 2 Other). Due to the fact that this52

was an in-laboratory experiment, recent restrictions related to53

the COVID-19 pandemic meant that we were unable to recruit54

a larger or more diverse sample of participants. However, we 55

address this shortcoming in our Online Experiment (Section 5). 56

4.2. Perceptual Experiment Results 57

We ran a 4-way repeated measures ANOVA on the Percep- 58

tual Difference results with the within factors Sex, Race, Ac- 59

tion Unit, and Activation Level. Due to the imbalance be- 60

tween participant race and sex groups, we did not include these 61

between-groups factors in the analysis. In order to meet the 62

assumptions for ANOVA, we analysed the data for sphericity 63

violations and applied Greenhouse-Geisser corrections to the 64

degrees of freedom (see Table 1). We also conducted the Kol- 65

mogorov–Smirnov analysis for the normality of residuals per 66

each level of the factors and found that not all residuals were 67

distributed normally, however, we assumed sufficient robust- 68

ness of ANOVA for these violations. The ANOVA results can 69

be seen in Table 1. We ran post-hoc analysis using Tukey’s 70

HSD tests throughout. 71

Factor F(DFn, DFd) = F-value p-value η2
p

Sex F(1, 19) = 1.727 0.2 0.08
Race F(2, 38) = 4.192 0.02* 0.18
Action Unit F*(2.93, 55.58) = 123.8 0.00* 0.86
Activation F*(1.21, 22.90) = 158.2 0.00* 0.89
Sex-Race F(2,38) = 7.826 0.001* 0.29
Sex-AU F(11, 209) = 2.99 0.001* 0.14
Race-AU F(22, 418) = 6.885 0.00* 0.27
Sex-Activation F(4, 76) = 2.887 0.03* 0.13
Race-Activation F(8, 152) = 1.581 0.14 0.08
AU-Activation F(44, 836) = 19.29 0.00* 0.50
Sex-Race-AU F*(6.73, 127.86) = 5.301 0.00* 0.22
Sex-Race-Activation F(8, 152) = 2.031 0.046* 0.10
Sex-AU-Activation F(44, 836) = 0.979 0.5 0.05
Race-AU-Activation F(88, 1672) = 1.592 0.001* 0.07
Sex-Race-AU-Activation F(88, 1672) = 1.68 0.00* 0.08

Table 1: ANOVA interactions with dependent variable “Difference” from the
perceptual results. (AU = Action Unit, * represents significant p-values, F*
stand for Greenhouse-Geisser correction for violations of sphericity). Effects
sizes are reported in the last column (η2

p).

4.2.1. Character Sex & Race 72

There was no main effect of the Sex of the character. There 73

were some smaller interactions showing some individual differ- 74

ences in the models, but no interesting trends. 75

We found a main effect of character Race, where shape dif- 76

ferences were less perceptible for Black characters overall than 77

for Asian characters (p < 0.02). An interaction between Race 78

and Sex gave further insight that shape differences were more 79

perceptible for the Asian Female character than other charac- 80

ters except for the White Male (p < 0.03 for all). There was an 81

interaction between Race and Activation Level, which showed 82

the Frown and Cheeks Puffed (p < 0.02) were the main AUs 83

affected. This implies that differences in the cheek and frown 84

expressions were less perceptible on Black characters. 85

4.2.2. Activation Level 86

A main effect of Activation Level showed a significant in- 87

crease in perceived differences as the activation increased, as 88

expected. 89
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Fig. 3: Main effect of AU from our experiment.

AU Name Difference AU Name Difference
Mouth Open 5.97 Eyes Opened 3.15
Eyes Closed 5.2 Cheeks Puffed 2.77

Smile Lips Closed 4.18 Mouth Frown 2.56
Eyebrows Up 3.56 Frown 2.22
Lips Protude 3.55 Nostrils Dilated 1.78

Cheek Inhaled 3.24 Neutral 1.42

Table 2: The AUs ordered by average perceptual difference.

There was no difference across all characters and AUs at the1

lowest Activation Level of 0.2. However, some characters were2

rated as relatively more different at higher Activation Levels.3

Specifically, Asian Female at 0.6 Activation Level was rated4

similarly to the AUs of some characters at the 0.8 level.5

4.2.3. Action Units6

Mouth Open, Eyes Closed, and Smile Lips Closed appeared7

to have a higher perceptual effect since the perceived differences8

were significantly higher when compared to all other AUs (p <9

0.02). Nostrils Dilated had the smallest effect since it was not10

significantly different from the Neutral. See Fig. 3 and Table 2.11

Further interactions showed that Mouth Open was signifi-12

cantly more different than most other shapes (p < 0.005). Eyes13

Closed were also prominent on some characters, while Nostrils14

Dilated and Frown were not different from Neutral, for some15

characters.16

Mouth Frown was the only AU to be rated significantly differ-17

ently between the sexes (p < 0.05), with the female characters18

being rated as more different. This could potentially be related19

to the inverse effect of gender stereotyping increasing saliency20

of unexpected emotions seen in previous work (i.e., that females21

are perceived as more angry than males) [13]. We also found22

interactions with Race, as well as interactions with Race and23

Sex (see Table 1). While we observed many significant differ-24

ences from post-hoc tests, we did not observe any meaningful25

patterns.26

5. Experiment 2: Online27

Our online experiment was devised to investigate the effect of28

participant race on perception of model race (i.e., the other-race29

effect [21, 22]) with a larger and more diverse pool of partici-30

pants.31

We rendered out images of the stimuli and used an online 32

form for presentation. To make the experiment shorter, we used 33

only the full activation level (1.0) for AUs. One hundred and 34

forty-four trials were shown to participants in random order, 12 35

AUs (including Neutral) × 6 characters x 2 sides (right, left). 36

For each trial of the experiment, we displayed the neutral ex- 37

pression side-by-side with the stimulus, and counterbalanced 38

whether the stimulus was displayed on the left or right hand 39

side. Participants were asked to answer “How different are the 40

expressions?” by selecting a radio-button. The radio buttons 41

ranged from 1 defined as “Not Different” to 5 defined as “Ex- 42

tremely Different”. 43

5.1. Participants 44

In order to reject participants that were not concentrating on 45

the experiment, we checked our data where ‘No Difference’ was 46

not selected above a chosen threshold for the 12 trials where the 47

neutral face was displayed on both the left and right. 48

After removal of 24 users that failed our attention test, 120 49

participants completed the experiment (40 White, 40 Black, 40 50

Asian, with 20 Male and 20 Females in each race group). 51

Since the experiment was conducted online, we did not have 52

control of screensize so we included a question on the form for 53

participants to report their monitor screen-size. 17 participants 54

viewed the stimuli on a screen size of 8”-12”, 63 on 13-17”, 24 55

on 18-23”, 15 on 24-26”, and 1 on screen of 27” and above. 56

5.2. Results 57

In order to evaluate if smaller screen sizes made perceiv- 58

ing geometric differences more difficult, we first conducted an 59

ANOVA with between factor Screen Size and within factor 60

AU. The normality assumption for our data was tested using 61

Shapiro-Wilk test and found that none of the residuals were 62

normally distributed. Therefore, a non-parametric analysis with 63

Aligned Rank Transformation (ART) was used, since it allows 64

interaction effects to be analysed (unlike the non-parametric 65

Friedman’s test alternative) and does not require assumptions 66

for ANOVA to be met. Post-hoc tests (α = .05) with Tukey’s 67

adjustment were conducted to check significance for pairwise 68

comparisons. 69

We did not find a main effect of Screen Size or an interaction 70

with AU, confirming that the size of participants’ screen did not 71

affect their judgments. 72

5.2.1. Race 73

A mixed model non-parametric ANOVA was then conducted 74

to determine if there was an interaction between participant 75

race and character race, considering the within-group factors 76

character AU, and Race and between-groups factor participant 77

Race. A main effect of participant Race was found (F(2, 117) = 78

10.17, p < 0.0001), where White participants rated differences 79

overall lower than Asian or Black participants (p < 0.04 in 80

both cases). An interaction between participant Race and AU 81

(F(2, 4095) = 5.70, p = 0.000) was found but a closer look at 82

the post-hoc comparisons did not reveal many significant differ- 83

ences, except for White participants giving significantly lower 84
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ratings for the Neutral AU compared to Black and Asian partic-1

ipants (p < 0.05).2

A main effect of character Race also occurred (F(2, 4095) =3

4.94, p = 0.008), where differences shown on Asian characters4

were rated higher than differences shown on Black characters,5

as before. A main effect of AU (F(2, 4095) = 773.09, p =6

0.000), and interactions between AU and character Race oc-7

curred (F(22, 4095) = 11.63, p = 0.000), which followed the8

same trends as before - differences were rated higher for Neutral9

AU and lower for Smile Lips Closed and Frown for White char-10

acters compared to other two races. Higher differences were11

found for Eyebrows Up, Eyes Open AUs and lower for Mouth12

Frown and Cheeks Puffed for Black characters compared to the13

same AUs of other races (p < 0.05, for all).14

Importantly, we found no interactions between the partici-15

pant Race and character Race, implying that an ‘other-race’ ef-16

fect did not occur, and results on character race were consistent17

across participants.18

5.2.2. Sex19

A mixed model non-parametric ANOVA was conducted,20

considering the within-group factors AU, and character Sex21

and between-groups factor participant Sex. There was no main22

effect of participant Sex, or character Sex, or interaction be-23

tween them. An interaction between participant Sex and AU24

(F(11, 2714) = 9.72, p = 0.000) showed that some AUs were25

perceived differently by male and female participants. Male26

participants perceived greater differences for Neutral, Mouth27

Open, and Eyes Closed, while female participants rated Mouth28

Frown higher (p < 0.05 for all). An interaction between AU29

and character Sex (F(11, 2714) = 4.37, p = 0.000) showed30

similar effects as in Experiment 1. For females, the differences31

were higher for Neutral and Mouth Frown AUs, while differ-32

ences were higher for males compared to female characters for33

Smile Lips Closed (p < 0.05 for all). There was also a 3-34

way interaction between AU, participant Sex and character Sex35

(F(11, 2714) = 1.85, p = 0.041), where only one difference36

was found in post-hoc tests for the Neutral AU - male partic-37

ipants rated female characters higher than female participants38

(p < 0.04).39

5.3. Discussion40

Our online experiment confirmed our findings from the labo-41

ratory study on a larger sample size, and added the fact that our42

results are generally consistent across participants, regardless of43

sex or race. Since our laboratory experiment was conducted in a44

more controlled environment and tested more variables than the45

online experiment, we use this data for our subsequent model46

fit (Section 7).47

6. Error Metrics48

We investigate here the relationship between numerical error49

metrics and perception. We calculate each metric for each Ac-50

tivation Level of each AU, for each character. Each metric is51

calculated between the neutral face and the activated AU.52

6.1. Geometric Error Metrics 53

Root-Mean-Square. We calculate the RMS error between two 54

meshes by getting the sum across all N vertices of the square 55

root of the average of the square of each (x, y, z) component of 56

each delta vertex δ~vn (difference between that vertex position in 57

the blendshape mesh and the same vertex in the neutral mesh): 58

δRMS =

N∑
n=1

√
1
3
δ~vT

n δ~vn =
1
√

3

N∑
n=1

‖δ~vn‖ (1) 59

Spatio-Temporal Edge Difference. STED is a perceptual met- 60

ric for dynamic meshes which focuses on local and relative 61

changes of edge length by measuring the standard deviation of 62

relative edge length around each vertex, rather than global mesh 63

difference. The model parameters have been tuned such that its 64

results best match perceptual data. For details and implemen- 65

tation, please refer to the paper by Vasa and Skala [53], and an 66

overview by Corsini et al. [51]. 67

6.2. Image Error Metrics 68

To calculate our image metric results, we took screenshots 69

of each stimulus during the experiment and cropped out a large 70

amount of the empty space surrounding each head. An exam- 71

ple of the crop can be seen in Fig. 2. MSE and SSIM were 72

calculated using scikit-image [58]. 73

Mean-Squared-Error. We calculate MSE by getting the per- 74

pixel average error between images A and B, where N is the 75

total number of pixels in the image, and ~xA
n is the nth pixel of 76

image A. 77

δMS E =
1
N

N∑
n=1

~xA
n − ~x

B
n (2) 78

Structural Similarity Index Metric. SSIM is calculated as de- 79

fined by Wang et al. [52] and using the default suggested pa- 80

rameters. It is designed to model the response of the human 81

vision system and should correlate better to our perceptual re- 82

sults than standard MSE. SSIM measures similarity between 0 83

and 1 rather than dissimilarity: we invert this metric (i.e. 1- 84

SSIM → SSIM) for better comparison with our other metrics 85

where appropriate. 86

7. Model Fit 87

To find the best model describing the relationship between 88

perceptual results and the calculated errors, several Generalised 89

Linear Models were tested and compared using Akaike Infor- 90

mation Criterion (AIC) that combines the log-likehood (best fit) 91

penalised by the model complexity (as measured by the num- 92

ber of parameters to estimate in the model) for selection of the 93

best model [59]. The model with the lowest AIC is deemed the 94

best model (amongst those tested) for explaining the observa- 95

tions. A χ2 test for the deviance is then used to assess if this 96

selected ‘best’ model is actually a good model for explaining 97

the data [59]. Poisson and Gaussian distributions were tested 98

in combination with several link functions (identity, log, and 99
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(a) RMS*AU+Race:Sex (b) RMS*AU (c) STED*AU+Race:Sex (d) STED*AU

(e) MSE*AU*Race*Sex (f) MSE*AU (g) SSIM*AU*Race*Sex (h) SSIM*AU

Fig. 4: Model-fit for perceived difference using geometry metrics RMS (a-b), STED (c-d), and image metrics MSE (e-f) and SSIM (g-h) as per models listed in
Table 3. The 6 virtual characters behave in a similar fashion when using STED (c) and are well captured with the simpler model (d) corresponding to the average
model fit across the 6 virtual characters for each AU.

square root) [59]. We found that the Poisson distribution cap-1

tures the discrete nature of the perceived difference best and2

provides lower AICs than with the Gaussian distribution in the3

many models tested including the ones shown in Table 3.4

AIC ↓ is D ∈ [0; χ2
0.95] ?

Model Gaussian Poisson Deviance D χ2
.95

Activ 29700 (Id) 28440 (Id) 7650 7396
Activ *AU 24880 (Id) 24690 (Id) 3852 7374
Activ*AU+Sex:Race 24860 (Id) 24680 (Id) 3827 7368
Activ*AU*Sex*Race 24820 (Id) 24760 (Id) 3681 7252

STED 28704 (Id) 27346 (Id) 6551 7396
STED*AU 24850 (sqrt) 24680 (sqrt) 3844 7374
STED*AU+Race:Sex 24832 (sqrt) 24670 (sqrt) 3823 7368
STED*AU*Sex*Race 24781 (sqrt) 24742 (sqrt) 3676 7252
RMS 27965 (Id) 26903 (Id) 6109 7396
RMS*AU 24878 (Id) 24688 (Id) 3852 7374
RMS*AU+Race:Sex 24853 (Id) 24673 (Id) 3827 7368
RMS*AU*Sex*Race 24810 (Id) 24749 (Id) 3683 7252

SSIM 29534 (Id) 28075 (Id) 7280 7396
SSIM*AU 26287 (Id) 25591 (Id) 4753 7374
SSIM*AU+Race:Sex 25505 (sqrt) 25112 (log) 4264 7368
SSIM*AU*Sex*Race 24799 (sqrt) 24758 (log) 3680 7252
MSE 29920 (Id) 28678 (Id) 7884 7396
MSE*AU 26940 (log) 26120 (log) 5277 7374
MSE*AU+Race:Sex 25933 (Id) 25384 (Id) 4536 7368
MSE*AU*Sex*Race 24839 (Id) 24776 (Id) 3698 7252

Table 3: Model comparison with AIC↓ to explain the perceived difference
(columns 2 and 3). Best link function reported between Identity (Id), log and
sqrt. The lowest AIC for each metric are displayed in bold. Deviances (all with
Poisson distribution and best link function) for models are shown column 4.
A good model has a deviance in the interval [0; χ2

0.95] with χ2
0.95 reported in

column 5.

7.1. Variable selection with ANOVA5

Tables 4, 5, 6 and 7 shows ANOVA results for the models6

Metric*AU*Sex*Race with Metric corresponding to RMS,7

STED, SSIM and MSE respectively (see also Appendix A). 8

These tables show the importance of each variable and their 9

interactions when fitting a model with Gaussian distribution 10

and identity link function with perceived difference as the de- 11

pendent variable (some of these models have their AICs re- 12

ported in Table 3). As can be seen by the high values for 13

Sum Sq., a large amount of the perceived difference is ex- 14

plained using the Metric and the blendshapes (AU) along with 15

their interactions Metric*AU. These results imply the relation- 16

ship between the perceived difference and the metrics (geo- 17

metric or image based) are AU-specific, and using an AU- 18

specific model is necessary for good prediction. We note 19

that MSE and SSIM alone have less explanatory power than 20

RMS and STED variables (see lower Sum Sq. in the ta- 21

bles). These ANOVA tables explain the comparison shown 22

in Table 3 where AICs of models shown are either using only 23

the metrics (Metric=STED/RMS/SSIM/MSE), the full models 24

(Metric*AU*Sex*Race), the ones considering interactions be- 25

tween metrics and blendshapes (Metric*AU), and the models 26

that include Sex and Race as additional contributing variables. 27

Note that when these two variables (e.g. terms Sex:Race or 28

Sex*Race) appear in the fitted models, the models become 29

character specific for our experiment (c.f. the 6 characters used 30

shown Fig. 2 for which individual fitted lines appears and over- 31

laps at times in Fig. 4 (a), (c), (e) and (g)). 32

7.2. Best Metric? 33

In the geometry domain, all fitted models are good models 34

as per their deviance reported in Table 3 [59]. However, we 35

note that the perceptual metric STED achieves a lower AIC 36

(marginally) in comparison to the standard metric RMS (see 37

Table 3). Similarly, in the image domain, the perceptual met- 38

ric SSIM achieves a lower AIC (marginally) in comparison to 39



Preprint Submitted for review / Computers & Graphics (2021) 9

Df Sum Sq Mean Sq F value Pr(>F)
RMS 1 11125.30 11125.30 6174.53 0.00
AU 11 5114.03 464.91 258.02 0.00
Sex 1 3.56 3.55 1.97 0.16
Race 2 24.91 12.45 6.91 0.001
RMS:AU 10 2103.48 210.35 116.74 0.00
RMS:Sex 1 7.98 7.98 4.43 0.035
AU:Sex 11 30.06 2.73 1.52 0.118
RMS:Race 2 21.93 10.96 6.09 0.002
AU:Race 22 132.01 6.00 3.33 0.00
Sex:Race 2 36.30 18.15 10.07 0.00
RMS:AU:Sex 10 10.55 1.05 0.59 0.827
RMS:AU:Race 20 63.22 3.16 1.75 0.02
RMS:Sex:Race 2 6.87 3.43 1.91 0.149
AU:Sex:Race 22 140.94 6.41 3.56 0.00
RMS:AU:Sex:Race 20 58.88 2.94 1.63 0.037
Residuals 7062 12724.35 1.80 NA NA

Table 4: ANOVA interactions with dependent variable “Difference” and within
factors RMS, Sex, Race and AU.

Df Sum Sq Mean Sq F value Pr(>F)
STED 1 8909.20 8909.20 4959.53 0.00
AU 11 8879.79 807.25 449.38 0.00
Sex 1 0.6 0.6 0.33 0.563
Race 2 27.51 13.76 7.66 0.00
STED:AU 10 591.92 59.19 32.95 0.00
STED:Sex 1 10.49 10.49 5.84 0.016
AU:Sex 11 34.24 3.11 1.73 0.060
STED:Race 2 16.42 8.21 4.57 0.010
AU:Race 22 116.68 5.30 2.95 0.00
Sex:Race 2 26.00 13.00 7.24 0.00
STED:AU:Sex 10 9.72 0.97 0.54 0.862
STED:AU:Race 20 65.08 3.25 1.81 0.015
STED:Sex:Race 2 5.76 2.88 1.60 0.201
AU:Sex:Race 22 165.56 7.53 4.19 0.00
STED:AU:Sex:Race 20 59.37 2.97 1.65 0.034
Residuals 7062 12686.04 1.80 NA NA

Table 5: ANOVA interactions with dependent variable “Difference” and within
factors STED, Sex, Race and AU.

Df Sum Sq Mean Sq F value Pr(>F)
SSIM 1 6135.88 6135.88 3393.49 0.00
AU 11 8500.78 772.8 427.4 0.00
Sex 1 204.14 204.14 112.9 0.00
Race 2 615.25 307.62 170.13 0.00
SSIM:AU 11 924.91 84.08 46.5 0.00
SSIM:Sex 1 23.57 23.57 13.03 0.00
AU:Sex 11 405.87 36.9 20.41 0.00
SSIM:Race 2 113.56 56.78 31.4 0.00
AU:Race 22 484.94 22.04 12.19 0.00
Sex:Race 2 645.41 322.7 178.47 0.00
SSIM:AU:Sex 11 97.8 8.89 4.92 0.00
SSIM:AU:Race 22 148.01 6.78 3.72 0.00
SSIM:Sex:Race 2 148.00 74.00 40.93 0.00
AU:Sex:Race 22 297.97 13.54 7.49 0.00
SSIM:AU:Sex:Race 22 100.09 4.55 2.52 0.00
Residuals 7056 12758.19 1.80 NA NA

Table 6: ANOVA interactions with dependent variable “Difference” and within
factors SSIM, Sex, Race and AU.

the standard metric MSE (Table 3). All fitted models are good1

models as per their deviance reported in Table 3 with the excep-2

tion of the simplest one using only MSE [59]. This shows that3

MSE has less explanatory power than SSIM for explaining the4

perceived difference, which is not surprising since it does not5

account for structural fidelity of the image.6

Df Sum Sq Mean Sq F value Pr(>F)
MSE 1 4736.38 4736.387 2620.34 0.00
AU 11 8523.97 774.906 428.71 0.00
Race 2 599.75 299.875 165.90 0.00
Sex 1 33.00 0.330 0.18 0.67
MSE:AU 11 2162.63 196.603 108.77 0.00
MSE:Race 2 133.16 66.580 36.83 0.00
AU:Race 22 1098.38 49.926 27.62 0.00
MSE:Sex 1 137.96 137.969 76.33 0.00
AU:Sex 11 126.47 11.497 6.36 0.00
Race:Sex 2 266.21 133.105 73.64 0.00
MSE:AU:Race 22 547.68 24.894 13.77 0.00
MSE:AU:Sex 11 136.11 12.373 6.85 0.00
MSE:Race:Sex 2 25.38 12.690 7.02 0.00
AU:Race:Sex 22 123.35 5.607 3.10 0.00
MSE:AU:Race:Sex 22 232.52 10.569 5.85 0.00
Residuals 7056 12754.04 1.807 NA NA

Table 7: ANOVA interactions with dependent variable “Difference” and within
factors MSE, Sex, Race and AU.

We found that the perceptual image metric SSIM (measured 7

in a 2D projective space) is not as powerful as even the standard 8

geometry metric RMS (measuring the deformation in 3D) for 9

explaining the perceived difference. 10

This is interesting, as our participants viewed the stimuli as 11

a 2D projection, however their recorded perceived difference 12

is better explained by geometric metrics computed from 3D 13

meshes. A potential explanation may be that because faces 14

are very familiar objects, a 3D representation is automatically 15

imagined or inferred by participants when viewing 2D facial 16

images. Despite this, having a model fitted using image met- 17

rics can be useful for prediction of perceived difference when 18

geometry metrics are not available (e.g., for facial photograph 19

comparisons). 20

8. Model Prediction 21

One application of our models can be to predict the viewer’s 22

perceived difference for a given character’s deformation (as 23

measured by geometric or image metrics) from its neutral pose. 24

We note y an actual perceptual difference (data point) and ŷ its 25

prediction by one of our models. Prediction errors are com- 26

puted with formula error= ŷ− y for each N data point and these 27

are expected to be centered on 0. The RMSE=

√∑
i error2

i
N is a 28

global score that we use here for assessing our models. 29

8.1. RMSE & Cross validation 30

A K-fold cross-validation test (K=10) was conducted to as- 31

sess how accurate the models are for prediction on unseen data. 32

We report in Table 8 RMSE values with this cross validation 33

strategy (RMSE.CV) as well as the RMSE of the model when 34

fitted to the whole data (Column RMSE) as a baseline. Table 8 35

shows that the predictive precision are about identical for mod- 36

els using geometric metrics (STED or RMS) in combination or 37

not with factors Sex and Race. On the other hand, models us- 38

ing image metrics (MSE or SSIM) perform better with these 39

additional factors that help to compensate for the image met- 40

rics lacks of explanatory power in the models. We note that the 41

models Metrics*AU*Sex*Race fitted with all the data slightly 42
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Fig. 5: For model RMS*AU, boxplots of errors= ŷ − y are represented from left to right w.r.t. Perceptual difference y, Activation and blendshapes. Histogram of
perceived differences from all collected responses from participants is also shown (top left). Histogram of collected responses per Activation level is also shown
(top middle) for comparison and this flat distribution is also observed when counting responses w.r.t. AU (as per our experiment design explained in Sec. 3.3 and 4).

over-fit (i.e. RMSE.CV is systematically higher than RMSE by1

about 0.03).2

Model RMSE RMSE.CV
STED*AU 1.355 1.359
STED*AU+Race:Sex 1.353 1.358
STED*AU*Sex*Race 1.328 1.354
RMS*AU 1.358 1.362
RMS*AU+Race:Sex 1.355 1.359
RMS*AU*Sex*Race 1.330 1.358

SSIM*AU 1.497 1.501
SSIM*AU+Race:Sex 1.425 1.431
SSIM*AU*Sex*Race 1.328 1.356
MSE*AU 1.566 1.571
MSE*AU+Race:Sex 1.497 1.503
MSE*AU*Sex*Race 1.332 1.361

Table 8: Comparing RMSE (full dataset) and K-fold cross-validation predic-
tion error (measured with RMSE.CV averaged over 5 replications reported with
standard error of less than 10−3) ).

8.2. Error analysis3

We analyse these prediction errors in more detail to check4

their distribution. As a representative result, Fig. 5 shows the5

box plots of these prediction errors for the model RMS*AU for6

each level of perceived difference, Activation level, and for each7

blendshape. We note that boxplots have median value close to 08

for these errors when shown w.r.t. Activation and blendshapes.9

Fig. 5 (left) shows the box plots of these prediction errors for10

each perceived difference level as reported by participants (x-11

axis). In this case, we note that for low level of perceived12

difference at 1, the model provides a slightly systematic over-13

estimated prediction (ŷ > y). On the other hand, for high levels14

of perceived difference between level 5 to 9, the model provides15

a under-estimated prediction (ŷ < y). Participants are not using16

evenly the Likert Scale for rating their perceived difference (cf.17

histogram in Fig. 5 (top left)) and 82% of collected perceived18

difference data is in fact on the levels 1 to 5. Our models provide19

mainly good performance for reported differences on levels 1 to 20

5 where most of the data is. 21

9. Discussion 22

In this paper, we presented the first experiment on percepti- 23

bility of facial action units, and the relationship with numerical 24

metrics describing the displacements. Our main contribution is 25

our perceptual models for perceptibility of facial action units 26

which we demonstrated through cross-validation could predict 27

perceptual results from unseen data. Our model will provide a 28

starting point for the development of a universal perceptual er- 29

ror metric suitable for human faces. Our GitHub repository4 is 30

provided (data and models in R-code), allowing others to build 31

on our data investigating a larger range of faces, viewpoints, 32

and facial action units. 33

Our other contribution is the results of our experiments which 34

answer our questions from before. Firstly, we found that some 35

facial action units were more perceptually noticeable than oth- 36

ers, and provide a table showing the order of importance (Table 37

2). This perceptual ordering will be useful for game developers 38

for tasks that require an order of blendshapes, such as level-of- 39

detail blendshape reduction methods [5], or example creation 40

for blendshape transfer [7]. By removing blendshapes of lower 41

saliency, game developers can reduce memory usage and com- 42

putation time. 43

We noted that diversity is missing from much of the psychol- 44

ogy and computer vision research on recognition and percep- 45

tion of faces. Therefore, we included Asian, Black, and White 46

characters with various skin tones to determine if our model 47

could generalize across characters with different appearances. 48

In general, there were no large differences at a per-Race or per- 49

Sex level, implying that our results were generally consistent 50

across characters. However, we did find an effect of Race (see 51

Section 4.2.1), which showed that certain expressions were less 52

perceptible on our Black characters. We felt that this result may 53

4https://roznn.github.io/facial-blendshapes/



Preprint Submitted for review / Computers & Graphics (2021) 11

have been due to our predominantly European and Asian partic-1

ipant pool in the Laboratory experiment, indicating that differ-2

ences in perception of Black characters could be caused by the3

other-race effect [21, 22]. However, we tested a more diverse4

participant pool in our Online Experiment, which showed that5

the result was not due to the other-race effect.6

We also hypothesized that male and female faces would be7

observed differently, but did not find much evidence for this, ex-8

cept that the Mouth Frown AU was more noticed on the female9

than on the male faces in our laboratory experiment. We be-10

lieve this could be related to the inverse effect of gender stereo-11

typing increasing saliency of unexpected emotions, in this case12

the Mouth Frown could have been perceived as anger. Our13

online experiment confirmed this effect and additionally found14

that male smiles (associated with happiness) were rated as more15

salient than female smiles, which is consistent with previous16

work by Hess et al. [13]. Interestingly, this was not affected by17

the sex of the participant.18

With regard to activation level, we found an equally-spaced19

linear relationship between perceptual difference and activation20

level for most AUs. Additionally, we found that almost all AUs21

were not perceptibly different from the Neutral at our lowest ac-22

tivation level (0.2), with the only exceptions being Eyes Closed23

and Mouth Open, which were the AUs with the highest per-24

ceived difference overall. However, there were some AUs that25

remained imperceptibly different from Neutral at higher activa-26

tion levels. For example, Cheeks Puffed and Mouth Frown only27

became significantly different at 0.6 activation, Frown at 0.8,28

and Nostrils Dilated at 1.0.29

None of our image or geometric metrics used alone provided30

us with good statistical models. On the other hand, the per-31

ceived difference is well explained by metrics for each AU taken32

independently (as seen with the different slopes in Fig. 4).33

Lower AICs have been measured using more complex GLM34

models (not reported here) using two metrics in combination35

with AU and we believe that non linear models such as neural36

networks may be able to learn more informative metrics com-37

puted directly from vertices or pixels for predicting the per-38

ceived difference more accurately (e.g. for removing the bias39

of predictive errors shown in Fig. 5).40

Image metrics were shown to be worse at predicting per-41

ceived differences than geometry metrics, even though the42

viewers only viewed the 3D geometry from a single viewpoint43

(i.e., they were not allowed to interact with the geometry). This44

implies that humans have a strong ability to infer 3D shape of45

faces from a 2D image, and that the pixel-based differences in46

the images do not capture these differences as well as 3D ge-47

ometry comparisons. This is unlikely to hold true for different48

viewpoints besides the front view, but will be interesting to in-49

vestigate in future work.50

Additionally, we found that eye AUs (Eyes Closed and Eyes51

Opened) were rated high in terms of perceptual difference (Ta-52

ble 2) despite their low error metric values, showing that hu-53

mans are relatively more sensitive to eye expressions than other54

areas of the face. Additionally, Frown was one of the least per-55

ceptually different AUs, however it had medium-level geomet-56

ric error values compared to other AUs, and had either the high-57

est or second-highest error using image-based metrics. These 58

results further highlight the need for a perceptually AU-based 59

error metric for describing facial geometry alterations. 60

10. Limitations and Future Work 61

In this paper, we limited our study to static expressions of in- 62

dividual AUs to avoid confounds and to establish baseline mod- 63

els. However, it must be noted that perception of animated faces 64

with combined expressions is more complicated, particularly 65

since specific AUs are important for the perception of emotion 66

(e.g., AU 7 Lid Tightener for anger [32]). It is possible that 67

activation of AUs that are considered unimportant according to 68

our model, could be extremely important for the interpretation 69

of emotion of a virtual human, which we will study in future 70

work. Additionally, we plan to broaden our investigation to the 71

full range of AUs from FACS in future work. 72

We used only two characters to represent White, Black, and 73

Asian races, for the purposes of creating material variation in 74

the character models. We found some small effects of character 75

race, however, more character models would be needed to gen- 76

eralize our results. Similarly, while we found few differences 77

across our sample of female and male Black, White and Asian 78

participants, it is possible that other factors might affect results 79

such as participant age, etc. 80

In the future, our perceptual experiment could be replicated 81

and new models fit for individuals that have more difficulty 82

perceiving facial expressions than the general population (e.g., 83

those with Autism Spectrum Disorder [60]). Results would al- 84

low us to create custom virtual agent systems that can increase 85

or decrease blendshape activation levels to ensure clear percep- 86

tion of action units. 87
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Appendix A. Additional Analysis5

ANOVA has been used as a preliminary analysis for select-6

ing and understanding the role of the independent variables in7

our fitted models. Here, we show some additional analysis to8

further examine the ANOVA presented in the paper.9

Table A.9 shows the results of the ANOVA analysis (Gaus-10

sian distribution with Identity link function): The dependent11

variable Difference is well explained (with significant level)12

using Activation, AU, Race, Activation:AU, the interaction13

Activation:Race, and to a lesser extent (cf. order of magni-14

tude the Sum Sq) with interaction AU:Race:Sex. Note that this15

model for explaining dependent variable Difference is not the16

best suited (cf. AICs reported in the paper showing Poisson re-17

gression as performing best).18

Table A.10 shows the results of the ANOVA analysis with19

Poisson regression model which is a better fit as reported in20

the paper (based on AIC). The dependent variable Difference21

is likewise well explained using Activation, AU, interaction22

Activation:AU, and Race:Sex, AU:Race:Sex.23

Df Sum Sq Mean Sq F value Pr(>F)
Activation 1 5.53e+03 5532.88 3069.03 0.00
AU 11 1.17e+04 1064.25 590.33 0.00
Race 2 2.49e+01 12.46 6.91 0.00
Sex 1 3.56e+00 3.56 1.97 0.16
Act.:AU 11 1.10e+03 100.29 55.63 0.00
Act.:Race 2 5.51e-01 0.27 0.15 0.86
AU:Race 22 1.53e+02 6.94 3.85 0.00
Act.:Sex 1 5.14e-01 0.51 0.28 0.59
AU:Sex 11 3.73e+01 3.39 1.88 0.04
Race:Sex 2 3.63e+01 18.15 10.07 0.00
Act.:AU:Race 22 6.40e+01 2.91 1.61 0.03
Act.:AU:Sex 11 1.22e+01 1.11 0.61 0.82
Act.:Race:Sex 2 4.54e+00 2.27 1.26 0.28
AU:Race:Sex 22 1.47e+02 6.68 3.70 0.00
Act.:AU:Race:Sex 22 5.74e+01 2.61 1.45 0.08
Residuals 7056 1.27e+04 1.80 NA NA

Table A.9: ANOVA interactions with dependent variable “Difference” and
within factors Activation, Sex, Race and AU.

Df Deviance Res. Df Res. Dev F Pr(>F)
NULL NA NA 7199 9388 NA NA
Activation 1 1737.96 7198 7650.28 1737.96 0.00
AU 11 3227.60 7187 4422.68 293.42 0.00
Race 2 8.90 7185 4413.79 4.45 0.01
Sex 1 3.28 7184 4410.51 3.28 0.070
Act:AU 11 570.63 7173 3839.88 51.88 0.00
Act:Race 2 0.15 7171 3839.73 0.076 0.93
AU:Race 22 37.72 7149 3802.01 1.71 0.020
Act:Sex 1 0.01 7148 3802.00 0.0028 0.96
AU:Sex 11 10.01 7137 3791.995 0.91 0.53
Race:Sex 2 12.33 7135 3779.67 6.164 0.002
Act:AU:Race 22 26.54 7113 3753.13 1.21 0.23
Act:AU:Sex 11 4.33 7102 3748.799 0.39 0.96
Act:Race:Sex 2 2.87 7100 3745.93 1.44 0.24
AU:Race:Sex 22 43.89 7078 3702.047 1.995 0.0037
Act:AU:Race:Sex 22 21.04 7056 3681.008 0.96 0.518

Table A.10: Poisson ANOVA interactions with dependent variable “Difference”
and within factors Activation, Sex, Race and AU.

Appendix B. Residuals 24

Fig.B.6 shows the QQplot for the Poisson model RMS*AU: 25

KS (Kolmogorov–Smirnov test) fails indicating that simulated 26

data from the model (i.e. predicted differences) does not have 27

exactly the same distribution as the collected data (actual dif- 28

ferences). Residual distributions shown as boxplots (Fig. 5) 29

indicate that the model does not capture all deterministic pat- 30

terns in the data: more complex models may provide a better 31

fit. 32

Fig. B.6: QQplot for model RMS*AU.
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