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ABSTRACT

Temporal and spatial random variation of luminance in images, or "flicker”, is a typical degradation observed in
archived film and video. The underlying premise in typical flicker reduction algorithms is that each image must
be corrected for a spatially varying gain and offset. These parameters are estimated in the stationary region of
the image. Hence the performance of that algorithm depends crucially on the identification of stationary image
regions. Position fluctuations are also a common artefact resulting in a random ”shake” of each film frame. For
removing both, the key is first to extract global motion in the presence of unknown local motions. Parameters
are then estimated on that part of the image undergoing the global or dominant motion. A new algorithm that
simultaneously deals with global motion estimation and flicker is presented. The final process is based on a
robust application of weighted Least-squares, in which the weights also classify portions of the image as local or
global. The paper presents results on severely degraded sequences showing evidence of both Flicker and random
shake.
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1. INTRODUCTION

The automated restoration of image sequences is gaining in importance with the continuing rise of digital visual
media. Companies such as Philips, Thompson, Sony and Snell and Wilcox, all produce some kind of automated
restoration device, some of which operate in real time. Global degradation in archived image sequences are the
most visibly displeasing of all the artefacts that can occur. Noise, brightness flicker and image “shake”, are all
examples of this class of degradation. Brightness flicker could be caused by differing exposure times of each film
frame, while shake (position instability) can be caused by unwanted camera motion or by misalignment of film
frames in some conversion process. It is only after these degradations are removed that local defects like Dirt and
Sparkle, Film Tear, Line Scratches and so on, become more visible. Typically, the restoration operator would
seek to remove global defects and then remove the local defects.

In a sense, the removal of global defects is simpler than treating local defects. This is because in treating local
defects, it is possible to introduce visible distortion that is more displeasing because the distortion is different
from the rest of the picture. Distortion introduced by correcting global defects causes less of a contrast within
the frame since the entire frame is generally affected in the same way. Also, in treating global defects, especially
shake and brightness flicker, the algorithm can take advantage of information from a large portion of the picture.
This is not the case with local defects like Dirt and Sparkle in particular.

Several authors have dealt with the problem of position stabilisation (shake)!™® and flicker removal®? in the
past. In general, shake reduction is performed by estimating the global motion of each image, and compensating
for the unwanted component. Global motion estimation is therefore a key technology in this problem. Flicker
removal is performed similarly, by estimating the brightness change between the image frames and then com-
pensating this change in some way. However, flicker reduction algorithms generally assume that it is possible
to find correspondences between image frames. Shake removal processes generally assume that the brightness
of objects or the scene illumination does not change much with time. In archived footage, flicker can occur in
connection with significant scene motion and this makes it difficult to achieve a restoration in severe cases using
current technology.
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Figure 1. Top: Frames 0,10,20 of the Tunnel sequence. Bottom row: Frames 10, 15, 20 of part of the silent film Rory
O’More. Tt is difficult to visualise flicker from these stills, however the flicker in the Tunnel sequence is less extreme than
for Rory.

This paper therefore considers the problems of flicker and shake reduction together. A new formulation of the
flicker problem is presented together with a slightly different formulation of a global motion estimation process.
The paper considers how the two processes could function together; firstly as a two stage cascade and secondly
within a unified approach.

2. GLOBAL MOTION ESTIMATION

Consider a translational image sequence model as follows.
In(x) = In-1(Ann—1x + dpno1 + dpy 1 (%)) + €(x) (1)

where I,,(x) is the grey level of the pixel at the location given by position vector x in the frame n. The motion
between the two frames n and n — 1 at site x in frame n is given by A, pn—1X + dpn-1 +d;, ,_;(x). This
is made up of a global translational component d,, ,_1, a local motion component due to the local motion of
objects d;, ,,_; (x) and an affine warping component A, ,_1x. This affine warp allows the model to cope with the
stretching or warping of film in severe cases. For the moment, we assume that all of the global motion components
are unwanted. Therefore, in this model, the true underlying image sequence is obtained by estimating A, d and

shifting each image to compensate.

For ease of notation, define the vector function F(x,0) = A, ,_1X +dp p_1. With @ =[A, 1, dpp_1] i
the vector formed by the motion parameters. using a 2 X 2 matrix of components for A,, ,,_;, the global motion
component can cope with zoom, rotation, stretch, skew and can be written as follows.

F(X, ®) = An,n—lx + dn,n—l
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where
_(fz y 1 0 0 0
B(x)_(o 00z y 1
The parameter vector is © = [a1, as,dy, a3, a4, dy]T where {a;} are the matrix coefficients of A,, ,_1 and {d;} are

the vector coeflicients of the translational motion component dy, n—1.

Consider for the moment, that the local motion component d;, ,,_;(x) is zero. To solve the motion equation

with respect to ©, a typical approach is to minimize a function of the error e(x) = I,,(x) — I,—1 (F(x,0)) with
respect to ©. Unfortunately the image function I,_1(-) is not well defined and generally non-linear. Given an
existing estimate of ©, say 0, it is possible to generate an update §© such that © = 0, + 40, by linearising the
residual equation around the current estimate using a Taylor series expansion as follows:

I(x) — In_1 (B(x) ©) o
3
= VI,_1(B(x) ©)-B(x) - 60 + £(x)

€(x) and the higher order terms of the expansion are lumped together in the new residual £(x) linear with respect
to the update 60©. The V operator is the usual multidimensional gradient operator.
2.1. Maximum likelihood estimation

The maximum likelihood estimation consists in computing the motion parameter that maximizes the likelihood
of the residuals across the entire image: © = argmaxeg {P ({e(x)}x) = P (¢)}. Assuming the distribution of the
residual € is Gaussian, the algorithm is identical to least squares estimation and can be written as:

Do_
56 = argmingo {7 (€) = X[z}

. o (4)
oD — M 4 5O
Until convergence at final step i (0 = 0@)
At each step 1, 50 is estimated by Least Squares:
30 = [a® TgW)~1g® T4 )

where z() is the vector collecting the values {I,(x) — I,_1 (B(x) ©@)}, and G is the matrix collecting the
values {VI,_; (B(x) @) - B(x)}«.

2.2. Robust M-estimation

Unfortunately, the local motion component is never zero in most interesting sequences. In other words, there is
always something moving around in the foreground or background. The estimator outlined above, will necessarily
be biased by these local effects. The task is to find a simple mechanism to remove this local effect. This bias
generally manifests as outliers in the residual error surface over the image. In other words, the motion estimation
algorithm described above, when applied to the whole image, tends to lock onto the motion that is most prevalent
over the largest area of the image, but the regions showing local motion “pull” the estimator away from the global
effect. M-estimators® are now widely used to solve this problem and perform robust estimation of global motion
parameters.”® The underlying assumption is that the probability density function of the residuals is no longer
Gaussian, and can be written as:

1 e(x
P(e) ox exp l_i Z p (Q)] (6)
Op
X
Several functions p, convex or non-convex, have been proposed in the literature.% 7910 0, is the scale parameter
that controls the limit where the influence of the outliers begins to decrease.® This parameter is fixed offline”

but to simplify, it is set to 1 in section 4. The corresponding energy to minimize is non-quadratic and two
estimation algorithms are reviewed in section 4.



3. FLICKER PARAMETER ESTIMATION

Consider that there is no motion between successive image frames. An image sequence affected by flicker shows
fluctuations in intensity between frames that are spatially varying but of low frequency, and temporally varying
at a high frequency. One popular method to model the flicker effect is to consider the following linear relation
between two successive images in the sequence® 1:

Ini=a-I,+b 1)

with @ and b spatially constant for each frame. Then the estimation of parameters a and b can be performed
by comparing the maximum, minimum and mean of the gray values in the I,,;; and I,,'' or by comparing the
moments (mean and variance) of their grey-level histograms.* 3 12

Naranjo!'3 considered that the process causing flicker was non-linear. Thus given some non-linear function
f() the model is

f (In) =Ipt1 (8)

A restoration was performed by using standard the method of cumulated histogram matching.'®14 This results
in a non-linear equalisation of histograms using previous frames as references.

In order to deal with the spatially varying nature of flicker, two approaches have been proposed.

Blocks To deal with spatial fluctuations of the flicker, Roosmalen? split the image into small overlapping
blocks. As the flicker is assumed to be spatially low frequency, it is possible to use equation 7 on each blocks.
But the estimation of parameters a and b may be not reliable on some blocks, if the variance of the signal is
null for instance or if some events appeared in blocks such as blotches, local motion or outliers. In this case, the
parameters are rejected and replaced by an interpolation of more reliable neighbouring blocks. Once parameters
a and b have been found for all blocks parameters are interpolated to the pixel scale using bilinear interpolation.

Robust Formulation Roosmalen’s estimator is sensitive to outliers due to, for instance, local motion and
blotches. Ohuchi® improved Roosmalen’s method in considering a robust estimation scheme:

In+1 (X) = a’(xa a) : In(x) + b(x7 b) + E(X) (9)

with a(x,a) and b(x,b) (second order) polynomial functions with respect to the position vector x. The Flicker
parameter vector ©f contains the coefficients of the gain function a and the offset function b. It is estimated in
minimizing the following robust energy function:

JE)=>p (%) (10)

X

The maximum likelihood estimation of the flicker parameters is performed by minimizing the energy 7. This
problem is similar to the one presented in section 2.2. Section 4 presents the algorithms used to compute the
estimate.

3.1. The New Robust Flicker Estimation Scheme

Following Ohuchi, we use robust cost functions to reduce the effect of outliers due to local motion or blotches.
Cauchy’s function p is used as the weighting functional: p(e(x)) = %log (1 +5(x)2). The scale parameter o,
controls the value over which errors are considered as outliers. It is changed at each step of the estimation,
starting from o, = 30 (the flicker can cause intensity shifts of more than 20 levels of gray intensity over 256 gray
levels), to o, = 3 (corresponding to the noise level in our case). The scale parameter is divided by 1.5 at each

step.



3.1.1. Choosing the basis

Adopting a Cosine basis instead of polynomial yields a richer set of functions that can be modelled, as well
as a lower complexity since the basis is orthogonal (see section 4). The qualities of the estimates using both
bases have been assessed using 100 frames from Rory O’More. Both estimations had been carried out for a
fixed number of iterations and at different orders of the basis (up to order 12). The figure 2 shows the mean of
the ratio between error energies using cosine and polynomials. We can see that using a cosine bagis gives lower
error energy than using a polynomial basis. This does not imply that the underlying model of flicker is cosine
rather than polynomial. However, results are visually better with the cosine basis.!® Considering the possible
computational advantages, the algorithm proposed here adopts a cosine basis as follows.

wherea, = 1/vN g=0
T )1V2/N 1<¢<N-1
anda, = 1/vM p=0
PUNVR/M 1<p<M-1

Here, ¢p,(m, n) is the p, gth basis over an ‘image’ of size M x N. Thus the spatial model for the gain causing the

flicker is given by a(x) = a(i,j) = «a i,j) where ap,q are the coeflicients to be estimated (denoted a
g Yy p,q &P,aPpg
previously. A similar function exists for b(x) given coefficients Bn .
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Figure 2. Mean of the ratio of the error energy (7 (cosine)/J (poly)) vs. order of the basis.'®

3.1.2. Regression limit

In previous flicker reduction algorithms, there is the problem that as the restoration process proceeds, the flicker
estimation becomes progressively worse. This can be explained by considering that the estimation of the flicker
parameter is expressed as a regression problem. Considering the linear global model (cf. equation 7), two
formulations could be considered using the following errors:

€1 (X) = In(x) —ag - In+1 (x) —b
{52 (x) =ILi(x) —as - Iy(x) = bo (11)

They lead to two different solutions unless the correlation between the random variables I,, and I,,,; is 1.1617
This implies that the estimation will be biased. In particular, the gain a will be usually be less than 1. To fix this



problem, another possible formulation is to estimate the parameters using the Principal components of the cloud
of points (I,(x), L,41(x)).1® But to use the robust PCA,'® to avoid the effect of outliers in their estimation,
would increase the computation time.

As an alternative, we propose to change the model in order to make the problem symmetric. Two symmetric
estimators can then be written as follows:

&ﬂwzﬂmﬂw—hﬁﬂ—m-

ea(x) = (I,(x) — L1 (%)) — ua -

(It () + Tn(x)) = by 2
(Int1(x) + In(x)) — b

with u; = a1 — 1, us = ag — 1. With such a model and assuming that u = 0, both estimations give effectively
equivalent estimates. A simple experiment was conducted on 100 frames of Rory O’More, using no spatial
variability in gain or offset using both formulations. With the classical model the correlation coefficient?® was
not 1 but rather v/a; - a2 = 0.99. The bias observed is quite important since the gain of each estimation
is underestimated by about 0.01, which means that usually each successive frame will look darker of about
0.01 %100 = 1 gray level. By adding the symmetry aspect, the correlation coefficient was v/a; - a2 = 0.99999 (for
100 frames), which is visually not perceptible.

3.1.3. A new Estimator

Experience shows that using the linear model above is insufficient in extreme cases. Residual fluctuations appear
in the restored output because the real underlying model is better described by some non-linear process. It
becomes useful to incorporate non-linearity into the model in effect by cascading the idea of Naranjo with the
previous model as follows.

1
(Tn41(x) = f(In(x))) = 5 (Tn41(x) + f(In(x))) - u(x) +b(x) +e(x) (13)
The non-linearity is expressed by the function f which operates over the entire image as a global process, while
the spatially varying nature of the flicker is handled by the spatially varying gain a ( a = 1 — u ) and offset b.
The offset function b was less relevant for the restoration of Rory O’More.

For computational simplicity, it is possible to treat f and u separately. The non-linearity is first removed as a
pre-process using Naranjo’s estimator.'® Then the linear model is used to compensate for the spatially varying
flicker i.e by solving:

(T(x) + 1 (%)) - u(x) + b(x)

N | =

(T (x) — I (x)) =

Where I,,41(x) and IZ(x) are the frames obtained after the removal of the non-linearity.

However, none of the flicker models used here are valid in practice unless there is no motion between the
frames. This is often not the case, and various techniques have been used to deal with local motion. The next
section discusses the single unifying idea that links Flicker and Global Motion estimation.

4. ALGORITHMS FOR ROBUST M-ESTIMATION

In both the problems above, the effect of local motion is to cause outliers in the residual error which bias the
parameter estimation process. To deal with this problem, the effect of these outliers must be reduced. This
section presents two algorithms that can be used to perform the estimation of the global motion parameters and
the flicker parameters (cf. sections 3.1 and 2.2). For simplicity, the parameters to estimate are noted @ (instead
of 60O in section 2.2, or a in 3.1) and the error £(x) depends linearly on ©.

The first algorithm is widely used and is called The location step with modified weights® in the robust statistic
framework, or more commonly the Iterative Reweighted Least Squares,?* or as ARTUR in the Half Quadratic
(HQ) formulation.?2 The IRLS algorithm is reviewed in paragraph 4.1. The second algorithm, little known in
computer vision literature, has first been called The location step with modified residuals in robust statistics®



and as LEGEND in the HQ framework.??2 This algorithm is referred as Iterative Modified Residuals (IMR) and
is explained in paragraph 4.2 for global motion parameter estimation.

The origin of both algorithms can be explained in different ways,®1%22 but for simplicity we choose here
the Half-Quadratic framework. To minimize the energy J (cf. equation 10), HQ theory defines an augmented
energy J* with the same global minimum (for simplicity, the scale parameter o, is set to one):

J(e) = min {J* (e,b) = p*(e(), b(X))} (14)

J* is minimized iteratively in © and b = {b(x)}x:
Do
00 = argming {j*(e(j),b(j))}
bU+D — arg ming, {j* (6(j+1), b(]))}
Until convergence at final step j (0 = ©)

(15)

b, the auxiliary variable, corresponds to weights on the residuals in the IRLS algorithm and hence is noted w in
section 4.1. In the following sections, the matrix G corresponds to the Jacobian matrix of the error.

4.1. Tterative Reweighted Least Squares (IRLS)

The first proposed augmented energy can be written as:

T (e, w) =Y w(x) [e(0)]* + T(w(x)) (16)

X

When the auxiliary variable w = {w(x)}x is fixed, the update is estimated by weighted Least Squares:
ol — [GTW(J')G]—I (G)TW(j)Z (17)

The matrix W is diagonal and collects all weights w(x) defined by:

p ((x))
= 1
wix) = G0 (18)
where p' is the differential dp(e)/de.
4.2. Tterative Modified Residuals (IMR)
The second augmented energy can be written as:
J* (&,b) = D _[e(x) = b(x))* + £(b(x)) (19)
When the auxiliary variable b = {b(x)}x is fixed, the update is computed by :
oW =[GT G GT (z — b)) (20)
The minimization in b leads to:
(4 = - M 21
B9 (x) = £(x) (1 5 ot (21)

4.3. Remarks

It has been shown that the IRLS algorithm converges in less steps j to the estimate © than the IMR.610 But
in comparing equations (20) and (17), we see that the IMR algorithm involves less computation (product of
matrixes [GT G]) at each j step than the IRLS ([GTWU)G]). Most of all, in the specific case where [G is
orthogonal, the equation 20 is simplified by'?: @) = G7T (z — b))



5. PRACTICAL FLICKER AND GLOBAL MOTION ESTIMATION

Since flicker and global motion (shake or otherwise) can occur in the same sequence, it becomes useful to write
both the flicker and global motion estimation problem in the same model expression as follows.

In(x)
Linearising w.r.t global motion = I,(x)

() In—1(Ax + dpp—1 + dy 1 (%)) + b(x)
(%) [In_1 (B(x) ©) + VI,_1(B(x) ©)--00] +e(x)  (22)

=a
=a
The equation is made linear in the motion parameters in the usual way. As is shown in the expression above,
this yields a non-linear equation in the gain and motion parameters i.e. a term a(x)d0. To solve this system the
flicker and motion unknowns are treated separably: in effect using a kind of multidimensional Newton-Rhapson
approach.

A straightforward implementation of this idea is to iterate between the de-flicker and global motion estimation
steps as previously described until a low enough error energy > _e(x) is had. A more practical approach is to use
the global motion estimation module as a pre-process for de-flicker, and then the final global motion estimates
are generated after de-flickering. This latter idea would rely on the fact that image gradient is less affected by
low frequency flicker and the motion estimation used here is gradient based. Thus one could consider that a
reasonable (but not good enough for de-shaking) estimate of the global motion components can be had without
de- flickering. This estimate would be good enough to increase the amount of useful data that the flicker
estimation process uses from the image.

It transpires that this latter approach is the more practical, and made even more computationally feasible
by using the idea of Integral Projections®® to generate an estimate from the pre-processing Global Motion
estimation module. Using a straightforward implementation of Integral Projections requires that a horizontal
I™(3) and vertical I¥ (i) image section is created by summing columns and rows respectively as follows.

NG = Z I(,5) L) = Z I, (i, §) (23)

Such projections are created for I,,_; as well and corresponding projections are matched over a range of possible
motion components to yield estimates for the vertical and horizontal components of global motion. This assumes
that the effect of local motion is reduced by the integration operation. Of course using Integral Projections in
this manner restricts the pre- processing module to translational global motion only.

Three systems are therefore examined as follows.
F: Flicker estimation without any treatment of global motion

GM-F: An initial pre-process with Global Motion estimation, followed by Flicker estimation.

iGMF: Incorporating the integral projection method for global motion estimation with the
robust flicker estimation process by iterating between updates for motion and flicker
parameters.
To allow de-shaking, these systems are then followed by the 6 parameter robust global motion estimation
process as outlined earlier.

To test the behaviour of these systems in a controlled environment, the first frame from the mobile and
calendar sequence was duplicated to create a 100 frame sequence. Flicker (using order 6 cosine basis functions
for gain and offset), random translational shake, artificial blotches, lines and noise were then added. Three
frames from this sequence are shown in Figure 3. Results of parameter estimation on this sequence are shown
in Figure 4. The MSE plot on the right measures the performance of the three systems with respect to the error
in the estimated gain and offset function for each frame. All the systems perform well much of the time (note
the low MSE), but the F system, without global motion compensation performs quite badly at several points.
The GM-F system performs better but shows bad behaviour around frame 65 where the flicker was probably too
much for the GM pre-process to cope. The iGMF system performs most reliably. The displacement plot on the
left of the figure follows the same pattern. It is to be noted that both the integral projection and the 2D solution
for Global motion perform identically in this case.



Figure 3. Frames 0,10,20 from the heavily artificially degraded Mobile sequence. The degradation due to flicker is easily
seen in the stills. The shake is less visible.
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Figure 4. Results of parameter estimation using the degraded mobile sequence. Left: Estimated global horizontal
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actual gain and offset components and that estimated with F x — —, GM-F o—, iGMF %—.

6. RESTORATION SCHEMES

Previous sections have shown ways to estimate the flicker and affine shake parameters between frames. These
estimates consist of both deliberate effects (e.g. fade, pan, zoom) and unwanted effects. The difference between
the types of effects is usually indicated by the fact that deliberate effects are gradual transitions while defects
are high frequency. Given the observed parameter estimate corresponding to frames n,n —1 as ©,,,—1 the signal
can be written as @y n—1 = 0n,n—1 + NMp,n—1 where 8, ,_1 is the true underlying signal component and 7, ,—1
represents noisy artefacts. The problem is to estimate 7,,,—1 and hence compensate the image for these global
artefacts.

To estimate 7,,,—1 & high pass filter is used. To generate the actual measurements n;hn_l that are used for
compensation, two slightly different schemes are used for handling motion and flicker.

In the case of the motion parameters, the cumulative motion signal is smoothed with a non-linear high-pass
filter H using 6, =H *©Of where 0 is the cumulative motion signal and ¢,, is the smoothed output. If the motion
estimate was purely translational then ©f would be given by ©% = "7 di_1 . But as the parameters can
be affine, the cumulation of the motion between frames involves the product of affine transformations Ap_q
as well as the simple sum of translational components. It is necessary to use this signal since compensation
requires that each frame be shifted relative to each of the previous frames. The high pass filter consists of a 3
tap median filter followed by a 30 tap FIR filter using the Hamming function as the coefficients. This non-linear
filter is used because impulsive defects i.e. a large single frame shake are often observed. The idea is to reject
all outliers immediately as artefacts, and smooth the remaining signal. The signal used for compensation is then



Figure 5. Smoothing the integrated motion estimates in Rory O’ More

1!, = O¢ — 6,. An example of this process is shown in Figure 5. Those are results from using system GM-F on
the real sequence, Rory O’More. Note how impulsive the raw estimates are.

In the case of the flicker parameters, the situation is slightly different. In real archived footage, it is still
unclear that any of the proposed models are accurate. Cumulatively correcting for flicker through a recursive
process can still yield artefacts if errors occur. Roosmalen? offered a simple mechanism for dealing with this
by mixing the current deflickered output with the original degraded signal at each step. Here, an overlapped
window method is used. Given a reference frame n, the flicker parameters between that frame and each degraded
framen— K...n—1; n+1...n+ K is generated. Those parameters are smoothed using the filter described
above and the value 7, is used to compensate frame n only. This process is then repeated for frame n + 1, but
the previously compensated frame is not re-used. This is a computationally intensive process, but it is able to
cope with extreme fluctuations in flicker without propagation of errors.

7. REAL SEQUENCES

Assessing the performance of the systems on real degraded sequences is difficult because of the lack of any useful
criteria for assessing the visibility of artefacts. However, it is feasible to expect that a good de-flicker process
would reduce the fluctuations in the mean of image intensities from frame to frame. The Tunnel sequence as used
in* and Rory were tested. The visual results can be seen at www.mee.tcd.ie/sigmedia/~research in the form
of .avi movies. A fourth system (AGM-F), using the 6 parameter affine global motion estimation process before
de-flicker was also tested. The various combination systems perform about the same on the Tunnel sequence,
presumably because there is little drastic Global Motion and the Flicker is not intense. For Rory the situation
is different, and visibly better results are obtained when Global Motion and Flicker estimation are conducted
together. The AGM-F and iGMF systems outperform F alone, but both AGM-F and iGMF yield comparable
results.

Stills from the restored sequence do not show the improvement clearly so instead the average brightness and
the variance of the pixel intensities for each frame are measured and plotted over the entire sequence. Figure 6
shows the mean brightness of each frame before (red) and after processing. All the processes clearly reduce the
flicker, but it is harder to see from these plots which of the systems performs best. Since the visible problem with
flicker is the variation in brightness between frames it is sensible to measure the sum of the absolute differences
between mean brightness in consecutive frames and use that as a measure of temporal restoration smoothness.
With this measure, the original Rory curve has a sum ‘temporal gradient’ of 328, while the restored data had
sum gradients of 29 for F, and 25.5 for both iGMF and AGM-F. For Tunnel the situation is the same with the
corresponding measurements being 182, 8.5 and 7.5 respectively. This implies that the combination systems are
indeed yielding better temporal smoothness than using a de-flicker process alone without taking global motion
into account.
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Figure 6. Mean brightness after various processes to remove flicker and shake from Rory (left) and Tunnel (right).
Original, degraded brightness (red), F (green), iGMF (- -), AGM-F (black).

8. FINAL COMMENTS

The Flicker and Global Motion estimation problems have distinct similarities in the sense that both processes
are biased by local motion or local artefacts in the image e.g. blotches, lines. By using a robust estimation
framework, both problems can be treated in the same way by weighting out the effect of the local outliers. This
paper has investigated the connections between the two problems, and illustrated that improved results can be
had when the two defects are considered together. The use of Integral Projection was shown to be effective as
a computationally low cost method for accommodating some measure of global motion while flicker estimation
takes place. The visual results on Rory in particular, illustrate that when the two problems occur together it is
difficult to achieve usable results without using a joint process.
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