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Abstract

In this paper, a robust pattern recognition system, us-
ing an appearance-based representation of colour images
is described. Standard appearance-based approaches are
not robust to outliers, occlusions or segmentation errors.
The approach proposed here relies on robust M-estimators,
involving non-quadratic and possibly non-convex energy
functions. To deal with the minimisation of non-convex
functions in a deterministic framework, we introduce an es-
timation scheme relying on M-estimators used in contin-
uation, from convex functions to hard redescending non-
convex estimators. At each step of the robust estimation
scheme, the non-quadratic criterion is minimized using
the half-quadratic theory. This leads to a weighted least
squares algorithm, which is easy to implement. The pro-
posed robust estimation scheme does not require any user
interaction because all necessary parameters are previously
estimated. The method is illustrated on a road sign recog-
nition application. Experiments show significant improve-
ments with respect to standard estimation schemes.

1 Introduction

Appearance-based representation of objects has recently
received considerable attention [10, 9, 20, 4, 16, 14, 17].
One popular approach is the eigenspace representation
[10, 9, 20, 4, 11] which allows a substantial dimensionality
reduction of the recognition problem. Eigenspace methods
involve a reconstruction procedure, which consists in pro-
jecting the observation on the training eigenspace. Then,
this projection is identified with the closest model of the

database. Traditional least-squares (LS) estimation which
corresponds to the orthogonal projection on the eigenspace,
is sensitive to gross errors (outliers) that occur, for instance,
when the object is partially occluded [10].

To deal with outliers and occlusions, recent studies have
proposed local appearance-based representations of objects
[11, 20, 4]. Instead of learning the whole object appearance,
small parts are used as training images. Robustness of those
local appearance-based matching methods is based on the
assumption that at least one sub-region chosen for the LS-
estimation, is not corrupted by outliers [20, 4, 11]. One
drawback of local eigenspace-based representation is that
more parameters are required to reconstruct (or index) the
whole image.

Another way to cope with outliers, is to reformulate the
reconstruction step as a robust estimation problem [2, 7].
Among the methods proposed in the context of robust statis-
tics [6, 19, 18, 8, 15], M-estimators offer a good compro-
mise between algorithmic complexity and outlier rejection
capability. Their use for eigenspace recognition was first
introduced by Black [2]. Robust estimation can be applied
either with local or global eigenspace representation of ap-
pearance.

In this work, we use a global appearance representation
of objects [10]. A robust estimation is performed on the
training eigenspace using M-estimators [6, 2]. The first
contribution of this paper is to formulate M-estimation in
the framework of the half-quadratic theory [5, 3](section 2).
This theory introduces an auxiliary variable which, in our
case, can be interpreted as an outlier mask. This provides
a natural linearization of the normal equations, and results
in a - fast and easy to implement - weighted least squares
algorithm.
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Parameter estimation is an important point for image re-
construction but is seldom addressed in the literature. Most
of the time, the tuning of parameters is let to the user. As
a second contribution of this paper, we propose a method
to estimate the scale parameter of the M-estimators (section
4), making the whole method data driven. We also extend
the method to colour image recognition, taking colour com-
ponents into account in a pixel-by-pixel fashion. This is
explained in section 3.

Finally, we apply our method to hard redescending non-
convex M-estimators, which provide better outlier rejection.
Following the same idea as in the Graduated Non Convexity
(GNC) [2] algorithm, we gradually introduce non-convexity
by using three M-estimators in continuation. This results
in a new, simple to implement and non-supervised robust
recognition scheme for colour images which is applied to
road sign recognition (section 6).

2 Robust estimation using the half-quadratic
theory

To simplify, we first consider the case of grey level im-
ages. The extension to RGB images is presented in sec-
tion 3. The training images are arranged as n-dimensional
vectors by lexicographic ordering. A Principal Component
Analysis (PCA) is performed and ¢ eigenvectors are retained
to span the eigenspace F' (¢t < n). Given an unknown im-
age e, standard eigenspace techniques perform its recon-
struction on F' by computing the best representative e* of
e as a linear combination of eigenvectors :

t
e’ = chUj (1)
j=1

where ¢; is the j'* unknown co-ordinate of e* on the ;"
eigenvector U;. For grey level images, the residual on the
it" pixel is defined by:

€; = €; — 6; (2)
Least Squaresestimation. A standard method for the es-
timation of e* consists in minimizing the quadratic norm
Jo = |le]l. Geometrically, the solution e* of the least
squares estimation of e, is the orthogonal projection of e
onto the ¢-dimension subspace F'. As it is well known, least
squares estimation is sensitive to gross errors (outliers) pro-
duced, for instance, by occlusions [2].

M-estimation in the Half-Quadratic framework. M-
estimators, involving non-quadratic and possibly non-
convex energy functions, are naturally robust to outliers or
gross errors. M-estimation leads to the minimisation of a
robust norm Ji:

Ji(e) = plei) 3)
=1
where function p increases at a lower rate than the
quadratic function. To minimise J; in a deterministic
framework, we propose to use the Half-Quadratic theory
[5, 3]. Under certain conditions on p [3], the non-quadratic
energy J; is transformed into an augmented energy by in-
troducing an auxiliary variable b.

mcin {Jl(c) = Zp(el)} =

i=1

min min {Jf(c, b) = zn:(bi.e? + B(bi))} @)

¢ i=1
where § is a function of b;. Jf is half-quadratic, i.e.:

e When b is fixed, Jf reduces to a weighted least-squares
criterion, whose solution satisfies:

UT - B-U)e=UT -B-e (5)

where B = diag;=1..,{b;} . There are many possible
numerical algorithms to solve (5) (the conjugate gradi-
ent algorithm [13] is used here).

e When ¢ is fixed, .J} becomes convex with respect to b.
Moreover, it can be shown [3] that the explicit mini-

mizer is given by b; = b(e;) = % Vi. Due to the
properties of p [3], b; is close to one when ¢; is small
(inliers), and vanishes for large values of ¢; (outliers).
Therefore, b can be seen as an outlier mask, conceptu-
ally similar to the one defined in [2], excepted that:

- the mask is not Boolean in our case : b; is a real be-
tween 0 and 1,

- b appears naturally in our formulation and partici-

pates to the minimization process.

Given an initial guess co, we use the following alternate
minimization algorithm:

Vie{l...n} egm) =€ — 23:1 c§m) - Uij
Vie {1...n} ™) = pe™) (6)
T . B(m+1) U)- cm+1) — T . g(m+1) o

We can notice that algorithm (6) is similar to the Location
Step With Modified Weights, proposed by Huber in the con-
text of robust statistics ([6] p.183). The half-quadratic the-
ory is valid for a large class of functions, defined in [3].
Three standard robust functions, considered in this paper,
are presented in Table 1.



p(z) P (x) convexity
HS | 21+ 22 —2 monotone convex
HL | log(1+2?) | softredescender | non convex
GM lj% hard redescender | non convex

Table 1. p functions

3 Extension to colour image

We now consider the case of colour images. Colour im-
ages are transformed into 1-D vectors by concatenating red,
green and blue values and a PCA is applied to the 3n x 3n
covariance matrix. A first important point for the recon-
struction is the definition of the residual ;. Since colour is
a discriminant feature for recognition, the red r;, green g;
and blue b; components of the pixel i must not be consid-
ered separately. We consider colour components in a pixel-
oriented fashion and define the residuals as:

& =[(ri =117 + (9 =977 + (i =02 (D)

It is possible, as before, to take into account outliers, using
the theory previously described in section 2, and the result-
ing algorithm is similar to (6):

Vie{l...n} egm) is calculated using (7)
)

Vie {1...n} o™ = p{mH) = p{mED — p(e,)
(UT . B(m+1) | ZU‘) . c(m+1zi+_i UT . g_(72+1 e
)

4 Estimation of the scale parameter

The robust estimator defined by equation (3) usually de-
pends on a scale parameter o, that controls the point where
the influence of outliers begins to decrease:

Ji(c,0,) = Zn:p <§—p) 9)

Several methods have been proposed to adjust the scale
parameter o, [6, 19]: joint estimation of (c,o,) [6] or esti-
mation of o, before reconstructing c. A joint estimation of
(¢,0,) is generally computationaly demanding. For com-
putational efficiency, we first estimate the scale parameter
offline, using the images of the database. We then perform
the reconstruction step, keeping the scale parameter fixed.
This approach has revealed both fast and robust. Assuming
that the learning database is representative, on a statistical
point of view, for each pixel 7, the expected error ¢; be-
tween the observation and the reconstruction is only due to
the truncation on the ¢-dimensional eigenspace. In practice,

we compute the variance of the residuals for each image &
in the database: o7, = 2 3°" | (e;"")? where ¢ designates
the number of eigenvectors used to describe the eigenspace
and ef’t is defined as in (2) (for grey level images) or as
in (7) (for colour images). In practice, the distribution of
residuals is well approximated by a gaussian density. As a
consequence, about 95% of the computed residuals belong
to the interval [0; 204, ¢]. Considering the whole database
(composed of NV training images), it comes that more than
95% of the residuals are contained in [0; 20,] where:

oy = kerﬁz-i-?(N}{Uk’t} (10)

Considering that points i with residuals |ef| > 20, are
outliers and that for non-convex robust functions p, the in-
fluence of the outliers begins to decrease at their inflex-
ion point [2], one derives the following scale parameters :
0,u = 20y for the non convex HL function (see Table 1),
and 0,.,, = 2v/30, for the GM function. For the convex
function HS, we have fixed arbitrarily the scale parameter
to 0,,s = 20y, by considering that the behaviour of HS
changes from quadratic to linear at point 2 = 1. Once
o, is computed, the minimization can be performed us-
ing algorithm (8) and modifying the weights according to
b; = b(;—;).

5 M-estimation in continuation

Convex functions, like HS, yield a unique solution, but
the corresponding influence functions p’ are monotone. The
influence of outliers is thus bounded, but not null. From
this point of view, hard redescenders [19], such as GM,
are much more attractive. Unfortunately, hard redescenders
yield highly non-convex objective functions. Efficient de-
terministic algorithms can, however, be defined in this case,
using a gradual approach of non-convexity. We propose
here to use (in continuation) the convex function HS, (using
the least square estimate cy s as an initial guess) followed
by the non-convex soft redescender HL, and by the the non-
convex hard redescender GM. This strategy is similar to
GNC (used in [1, 2] for object recognition, with the GM
function). However, our approach shows a major improve-
ment: by exploiting the half-quadratic theory, the algorithm
explicitly addresses the problem of the non-quadraticity of
the energy function. This approach yields a natural lin-
earization of the normal equations.

6 Experimental Results

To assess the performances of the proposed approach,
we have tested our method on a road sign recognition prob-
lem. The set of (european) triangular road signs has been



learned, along with their rotation in the image plane. We
consider that the recognition is good when the correct road
sign is identified, with the correct rotation. The robust es-
timators in continuation have been tested against several
artefacts like cluttered backgrounds, occlusions and white
noise.

Training database. A training set of 1548 (76x76)
colour images representing 43 different road signs has been
collected (36 images per road sign, one every 10 degrees
in the image plane). A selection of training images is rep-
resented in figure 1. Only 60 eigenvectors are kept in this

t ta t3 t4 ts tg t7
Figure 1. Several road signs

experiment to span the eigenspace, which represents about
90% of the information in the database [10]. After each esti-
mation (standard LS and M-estimations with functions HS,
HL and GM), the euclidian distance between the estimation
e* and all the training images in the eigenspace is computed
and the closest model is selected.

Test images. The robust recognition method has been
tested on images with large corrupted areas (figure 2): clut-
tered backgrounds (images p; to ps), cluttered background
with occlusions (pg, p7, p11 and pi12), and cluttered back-
grounds with white noise (ps to p1o). Because of the trian-
gular shape of the road signs, the outlying cluttered back-
grounds represent about 50% of the area of the test images.
Images ps to pyo are corrupted by additive white gaussian
noise (with SNRs of —3.11dB, 2.83dB and 1.88d B respec-
tively). pg is the same as p; with noise. p;; and p;5 corre-
spond to ps, with a large occlusion area (blue area on p;1,
black area on pi5).
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Figure 2. Some test images.

(p12)

Two parameters are defined to assess the quality of the

recognition. Parameter d; is defined as the euclidian dis-
tance between the estimate e* and the closest training image
in the eigenspace. Designating by d» the distance between
e* and the second closest model in the database, we define a
recognition contrast C'as C = 100x (1— j—;). When C = 0,
then d; = d, and the identification of the observation is not
reliable. When C' = 100, then d; = 0, and the estimation
e* corresponds exactly to a model of the database.

Recognition results. For all tested images, the standard
LS reconstruction and recognition approach gives wrong
solutions. The values of d; and C are reported in Table
2 and wrong recognitions are marked as “w”. Excepted for
pe and ps, dy decreases and C' increases, after each step of
the robust estimation procedure .

HS AL GM
p1 | di =4782740 | di = 137 516 dy = 49119
C=17 C =87 C=9
P2 | di = 4089292 | di = 43 461 dy = 16 469
c=15 C =9 C =98
ps | di=5424270 | dy = 117 554 dy = 45 238
c=15 C =89 C =9
ps | di = 4787767 | di = 85 628 dy = 30 482
C =24 C =94 C =98
ps | di =3548001 | di = 84 858 dy = 30 482
C =17 C =91 C =98
pe | di=7107054 | dy = 1128597 | di = 1324429
c=1 C =20 C =20
pr | di = 4532272 | di = 270 583 dy = 85411
C=12 C =80 C =94
ps | di=7360926 | di = 4550 645 | di = 10 931 307
C=13 C =24 C=12
po | di =9362029 | dy = 1352827 | di =416 755
c=38 C =40 C =67
pro | di =9029500 | dy = 1146 891 | d; = 297 365
C=2 C =40 C=13
pu1 | di =7515481 | dy = 453180 | dy = 354 700
C =05 (w) C =53 C=10
pio | di =7979003 | di =852356 | di = 677491
C =14 (W) C =176 (W) C =179 (w)

Table 2. Distance d; and contrast C after each

robust estimation step (“w

” indicates wrong

recognition).

For images p; to ps, with cluttered background only, the
recognition results are excellent, with a recognition contrast
not less than 95 after the final GM step.

For the test images with additive white noise, the robust
estimation scheme recovers the correct model but the esti-
mates are farther off from the solution, as expected (com-
pare for instance pg and py).



For all images with occluded road signs, excepted p;-, a
correct recognition is achieved. Let us notice that the black
occlusion area in p1, may either be considered as inliers for
the training image ¢5, or as outliers for t5. p1o is indeed
ambiguous, even for human perception. There is no such
ambiguity in p;1, since the blue pixels are clearly identified
as outliers, except for the initial HS estimation step, which
provides a wrong recognition. The small value of C indi-
cates that e}; o (p11) is at equal distance between two train-
ing images (the second closest model is the correct one).
This wrong estimation is corrected by the HL and GM steps,
which reject more strongly outliers. This example shows
that colour information is taken into account with profit in
the recognition and that the continuation scheme is useful,
in case of ambiguous data.

As an illustration, Figure 3 shows the reconstructions,
after each estimation step (LS, HS, HL and GM), for im-
age po. The last image e} ¢(t2) corresponds to the LS re-
construction of the correct solution ¢, on the 60 eigenvec-
tors basis. As can be seen, the estimates improve after each
step of the robust reconstruction, and the final reconstruc-
tion ey, (p2) is close to the best estimate e} ¢ (t2).

eam(p2)  eLs(tz)

ewr(p2)

ers(p2)  eus(p2)

Figure 3. Reconstructions of p, at each step
of the recognition process and the LS recon-
struction for the corresponding solution.

In figure 4, we show typical outlier maps (i.e. images
of b obtained after the final estimation with function GM).
Outliers correspond to dark areas (where b; is close to 0)
and inliers to light areas (b; is close to 1). Some pixels in-
side the road sign appear as outliers because the truncated
eigenspace representation does not allow a perfect recon-
struction of the symbols.

Ps Pr P11 P12

Aldll<

Figure 4. Some outlier maps for GM estima-
tion.

Let us finally notice that the theoretical breakdown

point! of M-estimators is less than 11_t [6, 2]. Therefore the
percentage of outliers which can theoretically be handled in
our case is less than 2% (with ¢ = 60). However, in our
experiments, we have at least 50% outliers and sometimes
up to 65% corrupted data (image p11). The robust method
thus significantly outperforms its theoretical performances.
We have recently implemented an optimized version of
the algorithm. The reconstruction time is now less than 1
second per test images on a Pentium Pro 200 MHz P.C.

7 Conclusion

We have presented a robust eigenspace recognition
method for colour images, using M-estimators in contin-
uation. Exploiting the Half-Quadratic theory, we propose
a non-supervised algorithm which is simple to implement.
Experiments on highly corrupted colour images of road
signs, show that the method significantly outperforms its
theoretical breakdown point, yielding reliable recognition
in adverse situations (occlusion, noise or cluttered back-
ground).
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