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Abstract

This paper introduces a smooth posterior density function for inferring shapes from silhou-
ettes. Both the likelihood and the prior are modelled using Kernel Density functions and optimi-
sation is performed using gradient ascent algorithms. Adding a prior allows for the recovery of
concave areas of the shape that are usually lost when estimating the visual hull. This framework
is also extended to use colour information when it is available in addition to the silhouettes. In
these cases, the modelling not only allows for the shape to be recovered but also its colour infor-
mation. Our new algorithms are assessed by reconstructing 2D shapes from 1D silhouettes and
3D faces from 2D silhouettes. Experimental results show that using the prior can assist in re-
constructing concave areas and also illustrate the benefits of using colour information even when
only small numbers of silhouettes are available.

Keywords: Shape from Silhouettes, Kernel Density Estimates, Meanshift, Multiresolution,
KNN, PCA, visual hull.

1. Introduction

Three dimensional reconstruction of an object that is seen by multiple image sensors has
many applications such as 3D modelling [1, 2] or video surveillance [3]. Shape from silhouettes
methods infer the 3D shape of an object using a collection of its projected silhouette images
captured from different points of view. The best possible reconstruction (called the visual hull
[4]) can be computed using an infinite number of silhouettes captured from all viewpoints out-
side the convex hull of the object. Volume-based approaches focus on the volume of the visual
hull [5, 6, 7, 4] and this formulation can be re-expressed in a probabilistic framework to model
uncertainty with a discrete cost function [8]. As an alternative, surface-based approaches aim
to estimate a surface representation of the visual hull from the contours of the silhouette images
[9, 10, 11, 12], and Grauman et al. proposed a Bayesian framework for inferring a 3D surface us-
ing, as a shape representation, all contours of the silhouettes from multiple views [13]. However,
surface-based approaches are less numerically stable than volumetric ones and are also more
sensitive to segmentation error. Moreover, the visual hull does not capture concave regions of
the 3D shape, and colour information can be used to palliate this limitation [14, 15].

Volume-based approaches based on voxel occupancy rely on the optimisation of a discrete
objective function [5, 6, 7, 4]. The world volume is split into elementary blocks (voxels) and
each block can project onto a pixel in the recorded silhouettes. Like the bin of a histogram, the
block is incremented each time it projects onto the foreground part of a silhouette image. Such a
representation corresponds to a histogram representation as an approximation of the probability
Preprint of Digital Signal Processing (2013) DOI:10.1016/j.dsp.2013.06.007



density function of the spatial random variable x to be in the volume of the object. The qual-
ity of this reconstruction depends on the number of camera views, their viewpoints, the voxel
resolution, and the complexity of the object. The discrete nature of the histogram makes the
approach memory demanding. Moreover, optimisation methods (e.g. exhaustive search) of such
discrete representations are limited and suboptimal compared to smooth modellings that can be
optimised with gradient ascent methods. To alleviate this limitation, Kim et al. [16] recently
proposed a smooth Kernel Density Estimate (KDE) as another approximation of the probability
density function of the spatial random variable x to be in the volume of the object. For simplic-
ity, their modelling considers a 3D object volume as seen by orthographic cameras. Ruttle et al.
[17] extended this modelling to use standard pinhole cameras. Newton Raphson and Meanshift
algorithms [16, 17] can be used efficiently to search for the maxima of these KDEs and these are
suitable for parallel programming using Graphics Processing Units (GPU) for instance [18, 19] .
These smooth KDEs [16, 17] can be interpreted as likelihoods since they link the latent variable
(i.e. the spatial position of the object x) and the observations (silhouettes and camera parame-
ters). However, without prior information about the object to be reconstructed, these modellings
give an estimate of the visual hull and are therefore unable to reconstruct concave parts of the
object.

To improve on the visual hull and recover concave regions, we propose here to extend this
smooth modelling with KDEs by adding colour information in the likelihood and by adding
prior information (Section 3). We assess our method experimentally (Section 4) and show that
our approach accurately reconstructs the tested shapes. Accuracy, moreover, is enhanced when
colour information is used. We first present our approach to model the likelihood function in
Section 2 using observations recorded by either orthographic or pinhole cameras [16, 17, 20].
This likelihood is completed by introducing a prior model using either K-Nearest Neighbours
(KNN) [21] or Principal Component Analysis (PCA). Both approaches are encapsulated in a
multiresolution framework to avoid local solutions. We assess the two algorithms respectively
for 2D and 3D shape inference from respectively 1D and 2D silhouettes.

2. Modelling the likelihood
Our modelling for the likelihood originates from the following equation:
A+ F(X,0) = € ~ pe(e) 1
where

e x is the latent spatial variable of interest: x € R? is a spatial random variable in a plane
(slice) when considering 2D shape inference from 1D silhouettes, and x € R? is in the 3D
space when performing 3D shape inference from 2D silhouettes.

e F is a given link function modelling the relation between the spatial position x and the
information collected by the camera noted ® (see Section 2.1).

e The observed random variable, ®, is the projection of x in the image planes and many
observations have been captured with the multiple cameras in the form of silhouette im-
ages. The camera parameters are all assumed to be known. The set {©;};=;.... , collects all
observations from all pixels captured from different viewpoints.
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e The random variable € with distribution p, represents the noise that affects ®. This distri-
bution p, is the normal distribution with mean zero and variance 4? in this paper.

e [ is an additive auxiliary variable in Equation (1). Indeed Equation (1) allows us to write :
Paex(A0,X) = p(1 + F(x,0))
The case of interest in this application is when A = 0.

The joint density function of x and A can be modelled by (assuming independence of ® and x):

Pax(d.%) = [ puox(A0,X) pye(x|®) pe(®) d®  (Bayes)
= [ Pe(A+ F(x,0)) pye(x|®) pe(®) d® (p. = pyox see Equation (1))
= px(X) f P+ F(X,0)) pe(®) dO (independence)
= px(x) Eg [pc(1 + F(x,0))] (expectation)

2

The joint density function of A and ® corresponds to the prior py(x) multiplied by an expectation
that can be approximated by using the Strong Law of Large Numbers [22]:

. 1 Y
Pax(4,x) = = px(X) - ) pe(d+ F(X,0))) 7; 3)
¢ : i=1
prior

when A = O,E(X)

The observation ©; collected on pixel i has a weight 7r; defined as x; = 0 for a background pixel
and 7r; = 1 for a foreground pixel as defined by the binary silhouette images. The normalisation
constant C is defined as C = }!_, m;. Note that this modelling also allows the handling of non-
binary silhouettes if one chooses to use non-binary weights {r;};=1 ... ,. Inference about x can
then be performed by exploring the likelihood lik(x) or the posterior p,e(4 = 0,x) when a prior
is available. The term lik(x) can be understood as an average of likelihood functions computed
with one observation at a time. More information about this inferential framework can be found
in [23]. Next, we introduce explicit link functions F for two types of cameras.

2.1. Camera models

The definition of the link function F' depends on the chosen camera model. In our framework,
we consider two types of cameras: orthographic and pinhole. Orthographic camera models
are not faithful representations of real cameras but they provide a connection with the Radon
Transform (Section 2.1.1). Section 2.1.2 presents the link function for the pinhole camera model.
Experimental results for 3D shape inference from silhouettes recorded by a pinhole camera using
the cost function ﬁ(x) are shown in Section 4.1.

2.1.1. Orthographic camera

The function F links the information recorded in the image with the 3D spatial position
x. Figure 1 illustrates this relationship: each pixel i is characterised by a ray and all positions
x onto this ray project exactly on this pixel. The further away position x is from the ray, the
less influence the data recorded at pixel i has. To model this, we choose the Euclidian distance
between the ray and x noted D;(x) = F(x,®;) where ®; corresponds to all known parameters



i

Figure 1: A 3D ray modelled by the intersection of two orthogonal planes Pand P,. x € R is a position in space and x;
is the spatial position of the pixel i in the image plane P. D;(x) is the shortest Euclidian distance from the 3D ray.

associated with pixel i (normal vectors are noted as n;; and ny;, and spatial position of pixel i is

noted as Xx;):
D;(x)*

di+d;

(an[. (x— X,-))2 + <ng, (x— X,-))2

“4)

By setting one of the coordinates of x to be equal to a constant, the cost function lik(x) can then
be visualised in a 2D slice of the object. As an illustration, Figure 2 shows this cost function
with x € R? in a slice where the 1D silhouettes correspond to a single line in the binary 2D
silhouette image. Pintavirooj et al. have proposed to solve shape from silhouettes using the
inverse Radon Transform for reconstruction in a stack of 2D slices [24] and Kim et al. have
shown how inference with the smooth cost function lik(x) in 2D slices outperforms the discrete
inverse Radon Transform approach [16].

2.1.2. Pinhole camera
For the pinhole camera, the function F(x = (x,y,2), ® = (81, 0,, P)) is defined as [17]:

— X Pii+y Piot+z Pis+Piy

Fl (X’ ®) - 01 X P31+y P34z P33+P3yy
F(x,0) = ®)

— _ X Poi+y Poo+z Pp3+Poy

Fi(x,0) =6, X P31+y P3+z P33+P3y
where P holds the camera matrix parameters that are known. The observation G; for pixel i cor-
responds to its pixel position in the image (6};, 6»;) and its camera parameters P;. Reconstruction
with the likelihood with a pinhole camera has been assessed on the Middlebury dataset [25, 17]

and additional results are presented in Section 4.1.

2.2. Extension to colour

The use of colour in volumetric reconstruction methods is also well studied in the context
of shape carving and of reconstructing the photo hull [14, 15]. Indeed, using photo-consistency
from multiple view points can also help in recovering concavities. Our modelling is extended
to use both colour and silhouette information for the inference of a coloured 3D shape. In order
to take colour into account, RG B values of the pixels are converted to chromaticity values since
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Silhouette 0° Silhouette 60°

Silhouette 120°

Original sliced object lik(x) Estimated visual hull

Figure 2: One 2D slice of an object is shown in the bottom row, left. Three 1D silhouettes have been observed (top row)
and used to estimate the likelihood (middle, bottom row: the blacker the colour of the map at x = (x,y), the higher the
value of ﬁ(x)). The estimated visual hull (shown bottom row, right) can be then extracted (Section 2.3). The contour of
the estimated visual hull is used as the initial estimate of our algorithms (Section 3). Note that as more silhouettes are
captured, the estimate converges towards the visual hull (e.g. Figure 3 shows Tik(x) computed with 36 silhouettes).

chromaticity red and green are more invariant to lighting conditions [26, 27]. The conversion

equation is as follows:
R G

r:R+G+B’ g:R+G+B ©)

Two additional Gaussian probabilities of chromaticity red r and green g are added to the likeli-
hood of the KDEs. The colour KDE is then generalised as:

Daxrg(A = 0,X,7, 8) < Pyre(X, 7, g)X

N -Fx,0) (r=r) (g-8)
;e"p( 2w e o ]”" @

Tik(x.r.g)

where, (h, h,, hy) are the bandwidths of the Gaussian kernels for the spatial and colour domains.
Such modelling allows for not only the recovery of shapes but also of shapes’ surface colours
(photo hull).

2.3. Optimisation

The cost function lik(x) is a KDE computed using n observations. As n becomes larger, i.e.
when more images are collected, the computation of lik(x) at a spatial position x becomes more
intensive. In practice, we consider only the kernels with the observations (pixels) in the vicinity
of the projection of x in each camera view. This reduces the number of computations needed to
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evaluate lik(x) at x. The contour of the convex hull of the object can then be recovered using
lik(x) computed on a grid spanning the 2D slice [17]. Alternatively, gradient ascent techniques
can also be used to find this convex hull Q6, 17]. In Eu‘ticular, the Meanshift algorithm has been
used for optimising both the likelihood lik(x) (and lik(x, 7, g)) and the posteriors when using an
orthographic camera model. Newton Raphson algorithms have been used when using a pinhole
camera [17, 28].

3. Modelling of the posterior

Two modellings for the prior are proposed to complement the likelihood, one using KNN
(Section 3.2.1) and one using PCA (Section 3.2.2). This prior is currently designed for shapes
in 2D; 3D reconstruction is consequently performed using a stack of 2D slices. First, we start
by describing our shape representation (Section 3.1) and our prior (Section 3.2). Resulting pos-
teriors are presented in Section 3.3 and the multiresolution approach in Section 3.4. Resulting
algorithms for inference of shape are summarised in Section 3.5.

Figure 3: View of lik(x = (x,y) computed for the ALOI object (see Figure 2) with 36 silhouettes. The contour is
extracted and the feature vector collects all spatial positions Xj,-- - ,Xp around the contour and also the colour when
available (Section 3.1). At the start of the algorithms, this contour extracted from the likelihood is the first guess X©.

3.1. Shape description

The shape is described by a sequence of connected points. The points are chosen uniformly
along the contour in an anti-clockwise direction (see Figure 3). Note the sequence of points is
normalised by subtracting the mean of the points coordinates and by dividing by their respective
variance. This is a standard pre-processing step for obtaining a representation that is invariant
to translation and scale. Our shape descriptor contains not only the ordered list of 2D points
{x; = (x;,y)}i=1...m but also its local angles {a;}i=1.. »: @; is the angle between the vectors



X; — X;4+1 and X; — X;_;. We define the function f as:

(03] X1
(0% X2

fX)= | @ | with X= | X (8)
apm Xm

where M is the number of sampled points to describe the shape. Note that X and f(X) are not
invariant to rotation, i.e. choosing a different starting point x; = (x;,y;) on the shape will lead
to other vectors X’ and f(X’) that will be cyclic permutations of X and f(X). Note also that the
representation f(X) is, however, invariant to scale changes on X.

Colour information can also be added when available in the shape descriptor such that the
chrominance information (Equation (6)) for each location x; on the contour also appears in the
descriptor X. The spatial coordinates (x,y) and chromaticity values (r, g) are used to create the
feature vector and, therefore, the dimension of the feature vector is 4 X M, where M is the number
of points on the contour.

3.2. Shape prior modelling

Having a training database of N shape exemplars, a standard approach is to compress the
information in the training database and extract a small basis of functions to accurately recon-
struct any shape X with a small error. We propose two basis of functions, KNN (Section 3.2.1)

for training are all normalised as described in Section 3.1 to remove the effects of scale and
translation.

3.2.1. Shape prior modelling using KNN
The distance metric between shapes X and Y is defined as follows:

M
dX,Y) = )" |of —af] ©)
i=0

This metric is an absolute distance between f(X) and f(Y) and is used to find the nearest neigh-
bours. We define our basis of functions {U}i=.... k by selecting the K exemplars of the training
database that will be at the shortest distance of a shape X. To be insensitive to rotation, we also
consider all cyclic permutations of the exemplars. For instance, considering the first exemplar
X¢, we find its cyclic permutation m (noted X‘l’(’")) to have the minimum distance d(X, Xi(’"))
defined by:

sy = arg min{d(X, X)) (10)

Having computed all best distances between X and the N exemplars:
(X, XS, d(X, X5, L d(X, X)) (11)

the K exemplars with the shortest distances are then selected. The reconstruction Xy is defined
on the basis of these selected K—nearest neighbours (noted Uy):

K
Xy = U (12)
k?l



The weights {wy}r=1... x are calculated as follows:

1 dy .
= 1- th
“k (K - 1) ( dsum) W

K
dum = ) d(X,Uy) and di = d(X,Uy) (13)
k=1

Note that the weights sum to 1, Z,Ile wi = 1. The reconstruction Xy approximates the observed
shape X but at a normalised scale since the exemplars in the training database are all normalised.

3.2.2. Shape prior modelling using PCA

The PCA-based representation has been widely used to model shapes such as faces [29,
30] and also in Active Appearance/Shape Model [31, 32, 33, 34]. PCA allows a shape to be
approximated by a linear combination of eigenvectors of the covariance matrix computed using
the exemplars. To remove the effect of rotation, we select the best cyclic permutation Xj(m’ )
of the exemplar Xj first for each exemplar. The covariance matrix is computed with the N

exemplars {X;(mj)} j=1,-.v and its first K eigenvectors associated with the K highest eigenvalues
are computed with singular value decomposition [35]. The reconstruction X of a normalised
shape X is computed as the linear combination of the mean shape p and the K eigenvectors:

K
Xy =/1+Zwk Uy with wy =< X — p|U; > (14)
k=1
where the mean is g = T, X and Uy is the eigenvector associated with the k" highest
eigenvalue. The disadvantage of the PCA-based method is that the normalisation step to remove
the effects of translation and scaling is required for the current observation X to become as
similar as possible to the training database {Xf(m")},-:l,... ~- Note, that using KNN with our shape
descriptor does not require these normalisation steps to be taken between the observation X and
training database.

3.3. Posterior and inference

Having a current guess of the contour noted X, we can compute the reconstruction X(L’,) =

[X(L[])] AN X(I?M ]. We model a prior using X(U') to allow for the estimation of the refined shape at
(t+1). Each of the M points of XD = [X(lm), cee, xx;'l)] is updated individually. Let us consider

the first point x(lt”). The likelihood is modelled using the KDE (Equation (3)) and the prior for
x(lm) is modelled given XE;) and X©:

post(x|*") o Tik(x*") x prior(x!"""X{, X®) (15)
The reconstruction X(Ut) is converted into M — 1 unit vectors {n,(,?}mzz,n. _m such that nﬁ,’,) is orthog-

onal to the line defined by (X(l?] , X(L’,) ). We assume that the update x(lm)

of the line orthogonal to n!) and going through the point %% This can be translated into the
following equation:

is in the neighbourhood

n7(x"*Y - %0) = ¢, (16)
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where €, ~ N(0, h%,) is the error with normal distribution (mean 0, variance hf,). In a similar
fashion as the likelihood, the prior is modelled using a KDE:

M 2T ((U+1) _ o(D\\2
) . (1, (X] 7 = X))
prlor(x(lm)IX([’]), Xy x E exp|-——————"""| 17)
2h?
m=2 p
We use only slopes from the reconstruction and therefore this method is invariant to scale dif-
ference between the shape X and the normalised reconstruction X(Ut) Since both the likelihood
and the prior are KDE:s, the posterior distribution is also a KDE and a gradient ascent algorithm

is used here to maximise the posterior:

S(t+1) (r+1)
X, =arg 1;(1’91))( {post(x1 )} (18)

1
This is repeated for each point in the contour such that the estimated update is computed:

X(z+l) — [ﬁ(lfﬂ), e f((t+1)]

The shape of the initial guess X is the result of the estimation using only the likelihood [16]
(Figure 3).

3.4. A coarse-to-fine strategy

In order to converge iteratively towards a good solution even if the starting guess X© (e.g.
the convex approximation to the shape) is far from it, we need to be careful when modelling the
prior. Indeed at the start, the reconstruction X(I(J)) may not be very accurate. To avoid this prob-
lem, we construct a Gaussian shape stack whose concept is introduced in Lefebvre and Hoppe
[36]. The Gaussian stack is constructed by smoothing the exemplar shapes in the prior set using
increasing bandwidths (noted hg’)) without downsampling the shapes as is usually done in Gaus-
sian pyramids. This stack is computed using the convolution with a Gaussian (with bandwidth
h(et) ) on all exemplars in the training database from large to small bandwidths as a smoothing
factor. We note S/I;"(")r to be the set of exemplars smoothed with a Gaussian of bandwidth hg).

0.

The bandwidth A decreases at each iteration of the algorithm as follows:
" = ' By until by < By, with @ = 0.9 (19)

where Ay = 13, hyin = 1 and by, is selected experimentally. This procedure allows us to
achieve a coarse-to-fine strategy in modelling the prior. Figure 4 shows how an exemplar shape
evolves from a smooth convex shape to a more structured one as the bandwidth %, decreases. The
reconstruction at time f, X(l'j), that is approximated from the selected exemplars in the training
database is then iteratively refined to get more accurate shape estimates.

3.5. Algorithms

The estimation procedure using KNN is summarised in Algorithm 1. The estimation proce-
dure using PCA is summarised in Algorithm 2. The proposed prior is updated iteratively so that
concavity information can be introduced progressively using the Gaussian stack. The prior is
also refined at each step by choosing the nearest neighbours of the current estimate (KNN) and
by recalculating the eigenvectors (PCA). Both our approaches refine the selection of these com-
ponents iteratively during the estimation. This strategy differs from standard approaches where

the reconstruction is computed as a linear combination of K fixed pre-selected components.
9
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Figure 4: Multiresolution approach: variations of one of the exemplars in the training database w.r.t. /..

Algorithm 1 Shape from Silhouettes using KNN prior

Computation of an initial guess X© of the shape at time 7 = 0 with the likelihood [16]
Init 2.(0) = Ay = 13
repeat
Select the K nearest exemplars of X® in Sﬁj Ei;)r and compute X(U’) (Equation (12))
fori=1—-> M do
Model the prior for XSM) (Equation (17))
)A(EHI) = arg max e+ {post(xf”l))}
end for '
te—1t+1
he(t) = @' hypg with @ = 0.9
until ,(f) < hyiy = 1

4. Experimental results

Section 4.1 shows the 3D reconstruction using only the likelihood with real images captured
on a turning table. Section 4.2 assesses our methods for the reconstruction of 2D shapes from

1D silhouettes. Section 4.3 extends our approaches to 3D shape inference from 2D silhouettes.

4.1. 3D reconstruction using lik(x)

Figure 5 shows the 3D reconstructions computed using the likelihood lik(x) (with a pinhole
camera model) on real objects captured with a turning table. The inference is directly performed
in the 3D space (x € R?). Note how the concavity is not recovered: as more camera views are
available, the reconstruction converges towards the visual hull. This reconstruction using the
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Algorithm 2 Shape from Silhouettes using PCA prior

Computation of an initial guess X of the shape at time 7 = 0 with the likelihood [16]
Init /2,(0) = hpay = 13
repeat

Compute PCA using exemplars in S

rior and select the K eigenvectors associated with the
highest eigenvalues. Normalise X® and compute X(l’]) (Equation 14)).
fori=1—-> M do
Model the prior for XEHI) (Equation (17))
f(?”l) = arg max e+ {post(xﬁ”l))}
end for '
te—t+1
he(t) = @' hypgx with @ = 0.9
until /.(f) < by = 1

likelihood has been assessed and compared with the Middlebury dataset [25, 17] using silhou-
ettes. Inference with our gradient ascent algorithms has shown to be advantageous in terms of
both memory requirements and computation time [17, 28].

4.2. 2D shape reconstruction using KNN

This experiment assesses our approach for 2D shape reconstruction from 1D silhouettes using
a projective camera model.

4.2.1. Training and test databases

The 2D shapes that model the prior are the contours of 6 objects taken from the ALOI
database [37]. Each object class has seven images recorded from different viewing angles
[0°,15°,30°,45°,60°,75°,90°] which are divided into the test database S, (angles [15°,45°,75°])
and the training database S, (angles [0°,30°,60°,90°]) (see Figure 6). The training database
Sprior 18 used to approximate the prior for the shape with KNN. The total number of exemplars
in the training set Spior is N = 6 X 4 = 24. The exemplar X° is sampled into M = 360 points to
represent its contour.

4.2.2. Observations

The observed silhouettes correspond to 1D binary signals: the contours in S, are back-
projected using orthographic projection in different directions. These projections are computed
using the Radon transform that are then thresholded to give binary silhouettes. These binary 1D
silhouettes are used to compare the reconstructions inferred using the likelihood and the ones
inferred using the posterior. Colour information on the foreground is also used to design one of
the posteriors and we assess next its benefits compared to using only the silhouettes.

4.2.3. Experiments
In this section we compare the following 2D reconstructions:
e X| inferred using the likelihood computed with the silhouettes as observations,

e X, inferred using the posterior (KNN K = 2) computed with the silhouettes as observa-
tions,
11



Figure 5: Shape from silhouette reconstruction using the likelihood lik(x) (modelled with x € R3). From top to bottom:
original objects, one silhouette, reconstruction from respectively 3, 6 and 36 camera views (i.e. silhouettes).

o X; inferred using the posterior (KNN K = 2) computed with the silhouettes and the fore-
ground colour as observations,

Having the ground truth shape O, the Euclidian distance d; = ||Xi - 0|, Vi =1,2,3 is computed
to assess the reconstructions. The distances are computed for all shapes in the test set S;.;; and
their averages over all the shapes, d;, are computed with their standard errors. Figure 7 shows
dy, dy and ds w.r.t. the number of views (number of projections or 1D silhouettes available).
The distance d; can only decrease up to a point where the visual hull is recovered since only
the likelihood is used. The distance 32 is lower than 31 because the posterior allows for the
recovery of concave regions of the shape. This is only the case, however, when a sufficient
number of views are available (superior to 7) and we note that the standard errors of d, are
12
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Figure 6: Databases of 2D shapes at the highest resolution used for training and testing our algorithms. All cyclic
permutations of these exemplars are also taken into account to allow the reconstruction process to be insensitive to
rotations. When colour information is used, the colour on the contours in the original images of the ALOI database [37]
is used.
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Figure 7: Euclidean distance plot with standard error w.rt. the number of camera views: d; (blue), d, (red) and d3
(green).

quite large when very few cameras are used. Indeed, if the shape cannot be well discriminated
from different viewing angles using only silhouette information, it becomes hard to choose the
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optimal exemplars (the K neighbours) to compute the prior. Also, there are sometimes problems
in finding the best cyclic permutation of an exemplar X“® which can be misleading when trying
to create the pr10r for the shape. However, we note that the performance of the reconstruction
X, is better than X, computed with the likelihood when more than 7 cameras are used. When
adding colour information, d3 is the smallest overall indicating that X; is the best reconstruction
regardless of the number of cameras used.

The 2D reconstructions are shown in Figure 8. In general, concavities are well recovered
using the posteriors compared to the likelihood unless there are not enough clues (in the obser-
vations) to guide the selection of the best exemplars. Overall the results show that the posteriors

(b) Results from 3 camera views

Figure 8: Reconstructions: groundtruth O (red), X, (green), X, (blue) and Xg (yellow).

are able to recover the concave parts of the object and perform better than the likelihood.

Figure 9 shows the reconstructions X; at different resolutions of our algorithm. Concavity is
introduced iteratively by decreasing the smoothing parameter /.. We can see that the reconstruc-
tion is very close to the ground truth (i.e. corresponding smoothed exemplar) at each resolution
level.

4.3. 3D face reconstruction using PCA

In this section, the prior is modelled using PCA as the eigenvectors are known to be an
excellent basis to represent faces, both for 2D images [38] and 3D scans [39].

4.3.1. Database
We used the 3D Basel face model [39] which was created using 200 registered faces acquired
with a structured light scanner (Figure 10). Synthetic faces can be generated from random model

coefficients as proposed by Paysan et al. [39]. For our experiments, a total of 44 faces were
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Figure 9: From left to right: coarse-to-fine evolution of the reconstructions X3 (red) with the ground truth (green) at the
same resolution level.

created from the 3D Basel face model: 9 faces are used for the test set S;,,; and 35 faces (N = 35)
are for the training set S, To create silhouettes in multiple views, the 3D faces are projected

A4 AL

Figure 10: Examples in the Basel face model [39].

in several directions using an orthographic projection. The 3D faces have been split into 70
horizontal slices. A 3D reconstruction is then computed by stacking the estimated horizontal 2D
reconstructions along the Z-axis. The faces only correspond to a truncated head (see Figure 11)
where the back of the head is ignored. This truncation makes the alignment in rotation easier
in our algorithm (i.e. contrary to Section 4.2, there is no real ambiguity in the projections and
therefore the prior is not prone to error in finding the best cyclical permutation of the exemplars).
The novelty in this experiment is to adapt the 2D shape inference scheme proposed in this paper
for 3D shape inference. In particular we need the selected prior for each 2D stack.

Figure 11: 3D face decomposed into 2D oriented slices.
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4.3.2. Modelling the 3D prior
The shape descriptor is redefined as follows for the PCA priors:

X =[S1;82;--+;S4] (20)

where S, is the contour described by M = 360 points in the 2D i slice and s is the total number
of the 2D slices (here s = 70). The order of the 2D slices to create the feature vector is from top to
bottom and the sequence of the points for the slice is in an anti-clockwise direction (Figure 11).
The 3D prior Xy in Algorithm 2 for the 3D faces is computed at each resolution by finding the
best rotations of all the 3D exemplars in S, to align them with the current 3D reconstruction X.
Then PCA is computed for each slice using the aligned exemplars and only K = 3 eigenvectors
are used to update the prior in each slice.

4.3.3. 3D reconstructions of faces
In this section, we compare the following 3D reconstructions:

o X, inferred using the posterior (PCA K = 3) computed with the silhouettes as observations,

e X; inferred using the posterior (PCA K = 3) computed with the silhouettes and the fore-
ground colour as observations.

36 orthographic binary projections (2D silhouettes) were used in this experiment in addition to
foreground colour information for computing Xs. Figure 12 presents some 3D reconstruction
results with their error surfaces. The error surfaces show the distances between the points of the
reconstructions and the closest polygon in the mesh of the ground truth. The average height of
the 3D heads in the database is 150mm and the error ranges from Omm to 10mm in the error
surfaces.

Table 1 shows the means and standard deviations of the errors (shown as error surfaces in
Figure 12) when comparing the reconstructions with the ground truth. We have also computed
the mean and standard deviation of the errors when comparing the average face u given by PCA
with the ground truth. We note that using K = 3 principal components, both reconstructions X,
and X are closer to the ground truth than the mean face. Moreover, using colour information
allows the reconstruction X5 to be closer to the ground truth than the estimate X4.

5(4 Xs H
(1) mean 2258 2.1836  3.329
(1) std 1.7246 17108 4.2664
(2) mean 2.3504 2.2651 3.1239
(2) std 1.6866 1.6555 3.9391
(3) mean 24344 22633 2.5122
(3) std 1.825 1.802  3.4992

Table 1: Means and standard deviations (in mm) of the absolute error between the ground truth GT and the reconstruc-
tions, X4 and X5, and also the PCA mean p (see Figure 12 for the error surfaces computed for faces (1)-(3)).

Artefacts. Note that discontinuous circular bands appear on the surface of the reconstructions
due to the 2D slice representation of the prior modelling (Figure 12). However, simple post-
processing like vertical smoothing can easily remove these discontinuities.
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Figure 12: 3D face reconstruction: groundtruth (GT, left), the estimates (middle) (X4 is on top of )A(5 in each case), the
corresponding error surfaces [X4 — GT| and |X5 — GT| compared with the error with the PCA mean |GT — y| (right). The
colour scale for all the error surfaces is also shown ranging from Omm (blue) to 10mm (red).

4.3.4. Rendering of the estimated colour

When using colour information, not only is the spatial location estimated but also the chromi-
nance information at that location. Figure 13 shows the estimated colour textures on the 3D
reconstructed surface results. The texture error surface is also shown. Only chrominance in-
formation is estimated in our algorithm, so we use the intensities of the approximated prior to
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Figure 13: Colour Rendering: groundtruth (left), 3D face reconstruction X5 with colour rendering (middle) and its colour
error surfaces (right).

convert the chromaticity -red and -green into the RGB colour space for visualisation purposes
only. Then the RGB colour differences between the ground truth and the reconstruction results
are calculated to visualise the error surfaces. In Figure 13, the colour textures are well estimated
globally and well matched with the estimated shapes. However, it is more difficult for the meth-
ods to estimate colour information in some tiny regions of more complicated shapes and colour
patterns such as parts of the mouth and the upper eye. To deal with this problem, the contour on
each slice should be described with more points M to get a higher level of detail but this would
increase the computation time. The Rapidform-XOR software [40] has been used for rendering
the 3D reconstructions and coloured 3D reconstructions.

4.4. Discussion

We have shown first that shape from silhouettes is able to recover concavities when prior
information is used for inference and second, that colour information can also be taken into
18



account to improve the overall reconstructions. The cost functions used for inference are smooth
and differentiable and are suitable for optimisation using gradient ascent techniques.

The proposed priors have been designed using standard ideas for reconstructing a contour on
a basis of selected components. Depending on the nature of the database, we have proposed to
compute these components either using PCA or KNN. For instance, faces (Section 4.3) are very
well reconstructed with PCA with only K = 3 components. For comparison, similar reconstruc-
tion results have been obtained using KNN but with K = 23 components in this experiment.

In the first experiment (Section 4.2), KNN was the most efficient method and this can be
understood by the fact that any shape in the test set will be best explained by the K = 2 neighbours
from the prior set that correspond to the same object as viewed from a slightly different angle.
For instance, the duck viewed at angle 15° in the test set is very close to the two ducks viewed
at angles 0° and 30° in the training set (Figure 6). Note that the proposed algorithms can then be
adapted to any other strategy for finding the best components.

The prior is currently modelled in 2D and this can be a limitation only if the solution from
the likelihood (used as an initial guess for the posterior) is not well aligned with the model in
3D space. In practice, using only silhouette information is not the best approach for processing
accurate 3D reconstruction because well segmented binary silhouettes are difficult to collect and
also because the optimal solution in a perfect setting is the visual hull (a convex approximation
of the 3D shape and not the shape itself). The likelihood can be improved further by taking into
account more information from the sensor to recover concavities: for instance Ruttle et al. [41]
used the depth information recorded by the Kinect camera to extend the KDE for the likelihood.
Note that depth information also eases the segmentation of more reliable binary silhouettes for
3D reconstruction with shape from silhouettes methods.

5. Conclusion and future work

This paper has proposed KDEs of posterior density functions to infer shape from silhou-
ettes. Optimisation is performed using gradient ascent algorithms suitable for parallel processing
[18, 19]. Two methods have been proposed to model the prior (PCA and KNN) and the recon-
structions using these posteriors have shown that concavities can be well recovered when using
prior information. The posterior has been extended to use colour information both on the like-
lihood and the prior. This last modelling method offers the best performance in particular when
few camera views are available. Current efforts aim at extending the framework to consider other
types of data (e.g. depth data) to improve the likelihood, to tackle the problem of inacurate cam-
era parameters [41] and to investigate inference of 3D shape with prior information but without
point correspondence [42].
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