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ABSTRACT
We propose to fit automatically a 3D morphable face model to a
point cloud captured with a RGB-D sensor. Both data sets, the
shape model and the target point cloud are modelled as two prob-
ability density functions (pdfs). Rigid registration (rotation and
translation) and reconstruction on the model is performed by min-
imising the Euclidean distance between these two pdfs augmented
with a multivariate Gaussian prior. Our resulting process is robust
and it does not require point to point correspondence. Experimen-
tal results on synthetic and real data illustrates the performance of
this novel approach.

General Terms
Computer Vision

Keywords
Morphable Models, Shape Fitting, 3D Face Reconstruction, Regis-
tration, Divergence, L2E, RGB-D sensor.

1. INTRODUCTION
Face reconstruction is a very attractive research area as it forms
the basis of a wide range of applications such as face animation,
human-computer interfaces, face recognition or medical applica-
tions (e.g. plastic surgery). Methods for reconstructing 3D faces
can be categorised depending on the nature of the input data (data
capture system) and their applications. The most accurate system
to capture a 3D face is the laser scanner, which records a dense
3D map. Unfortunately its high cost and the need for cooperation
from the individual during the acquisition process has limited its
usage. Some cheaper alternatives rely on the inference of the 3D
face geometry from RGB images, where multiple cues from images
or multiples views of the scene are used for inferring the 3D recon-
struction. These approaches perform well but mainly in controlled
environments. More realistic conditions are still challenging to deal
with such as the variability of the head pose, the facial expressions
or the illumination conditions.

A popular alternative for capturing a 3D map is by using an RGB-
D sensor. Two technologies of RBG-D sensors co-exist: time of
flight cameras (expensive) and structured light cameras (cheap).
Both provide a noisy recording of the 3D environment, however
they have become a hot topic of research in recent years as an al-
ternative for 3D shape reconstruction. In particular, the availability
of commercial devices such as the Microsoft Kinect (sensor using
structured light) at a very low cost has triggered the development of
many algorithms for improving its performance and extending its
usage in many new applications other than video games for which
the Kinect was originally designed as an extension of the Xbox
console.

Scanning 3D faces with an RGB-D sensor does not provide accu-
rate results. The recorded data is very noisy and the depth map con-
tains holes or missing data due the limitations of the sensor. Two
approaches have been recently explored in the literature for deal-
ing with those problems. The first one relies on the use of multiple
acquisitions and combines them in order to obtain a high resolu-
tion 3D shape. The second uses a 3D model that is fitted to the
captured data. Results achieved when fitting shape models (Mor-
phable Model of the face) have shown better performance since
they are capable of inferring details of the face such as the mouth
or eyes. These details are usually lost when inferring a 3D shape
by averaging over all the registered depth scans.

The performance of most fitting algorithms depends on the initial
correspondences between the observed data and the shape model.
For instance, the representation of a particular feature in the ob-
servation (i.e tip of the nose) must be in correspondence with the
vertex representing the same feature in the Shape Model. As a con-
sequence most fitting algorithms depends on feature selection or
landmarking (required for initialisation) and this is limiting their
automation and with that, their applications.

We propose here to fit a morphable model by using a cost func-
tion that does not require any correspondences to be made. This
cost function corresponds to the distance between two probabil-
ity density functions, one modelled using the shape model and the
other using the observed data [3, 5, 4]. Inferring the model param-
eter with this distance allows for the approach to be unsupervised
and also robust. Our approach to 3D face morphable model fitting
can be explained in two steps. The first step consists in aligning
the observed point cloud with the average shape model. In other
words this first step focuses on estimating the rigid transformation
to match the observations with the average shape of the morphable
model. The second step aims at fitting the morphable model by esti-
mating the best reconstruction on the basis of its eigenvectors. The



mathematics used in both steps are based on pdf matching tech-
niques (reviewed in paragraph 2.3.4) extended for Gaussian Mix-
tures (section 3.2) in a Bayesian framework (section 3.4). We do
not perform any kind of filtering which would reduce details in the
input data, and we do not need any correspondences in between
the two shapes (observations and the model shape). The resulting
system is unsupervised and robust.

This paper is structured as follows. In section 2 we review the state
of the art in 3D face reconstruction. Sections 3 and 4 describe our
modelling to solve 3D face inference using an RGB-D camera. Ex-
perimental results are reported in section 5 and section 6 discusses
future improvements.

2. RELATED WORK
This section reviews several methods for reconstructing 3D faces
from RGB and RGB-D images. We also present a brief overview
on registration algorithms since it is a key process of most fitting
algorithms and it is the basis of our approach to 3D reconstruction
presented in section 3.

2.1 3D face reconstruction from RGB images
The inference of the 3D face shape from RGB images has been
deeply explored in the past decade. Systems for capturing RGB
images are cheap, fast and noninvasive. However, the reconstruc-
tion process from images involves a set of challenging difficulties
such as head pose, illumination and face expressions among others.
Several algorithms addressing those challenges have been reported
in literature based on shape from X techniques and analysis by syn-
thesis.

Shape from X methods are algorithms that use specific cues (X) to
infer the 3D shape [12]. The cues used are usually motion, shad-
ing, stereo and silhouettes among others [17, 25, 48, 26]. Even
though those methods have been successfully applied to 3D object
reconstruction, most cannot provide a realistic estimation of the 3D
face shape. Using an array of video cameras, Bradley et al. [11]
succeeds, however, in capturing 3D textured faces by combining
multi-view stereo with tracking techniques.

Analysis by synthesis on the other hand has proven to achieve bet-
ter results due to the use of prior information. It uses a morphable
model of the face built over a set of observations (training database)
[10, 35, 36, 7]. The problem can then be defined in a Bayesian
framework where the parameters of the model that best fit the ob-
servations are estimated by maximising its posterior probability
given the input data (observations). Optimisation techniques used
are reviewed in sections 2.3.1 and 2.3.2.

2.2 3D reconstruction from RGB-D images
3D reconstruction using structured light or Time-of-Flight cameras
has been a hot research topic in the past few years [16, 21, 22,
30, 32, 34]. If the quality of the recorded depth map is noisy and
suffers from missing data, it is still an attractive alternative for 3D
reconstruction. Using a Time-of-Flight camera, Cui et al. [15]
propose to merge a set of depth maps to infer a less noisy 3D shape.
The key problem to solve is the alignment or registration of all
the captured depth scans. Similarly using a turning table and a
cheap Kinect camera, Ruttle et al. infer a 3D shape of an object by
merging several point clouds recorded from different view points
around that object [44]. Registration is performed by maximising

a cross correlation between two pdfs (cf. paragraph 2.3.4), and the
accuracy achieved is shown to be similar to the 3D surface recorded
with an expensive Laser scanner [43].

Newcombe et al. [33] propose the KinectFusion system for merg-
ing sequential depth scans recorded with a Kinect camera and in-
ferring in real time a 3D mesh of a scene. The noise is reduced by
filtering each scan before registration. Focusing on faces, Hernan-
dez et al. [29] extend the KinectFusion approach to infer laser scan
quality 3D faces. However, small details are lost due to spatiotem-
poral smoothing used in the process. Weise et al. [53] use kinect
depth images to infer the facial expressions and dynamics of an ac-
tor to animate accordingly an avatar in real time. Their approach
uses a user-specific expression model that is fitted to the observed
scans with the Iterative Closest Point (ICP) algorithm. Similarly
using a Kinect camera, Zollhofer et al. [56] propose an automatic
method for 3D face reconstruction using Morphable Models. Their
algorithm relies on feature landmarks that can be detected from the
face (eyes, nose and chin).

Schneider et al. [45] proposed two algorithms based on the ICP
framework (c.f. paragraph 2.3.2) for registering laser scans of hu-
man heads. Holes may occur in the resulting mesh but these can be
filled in using a prior model for heads. Using a morphable model
also helps for resampling efficiently the inferred mesh.

2.3 Registration & correspondences
In many reconstruction methods using RGB and RGB-D images,
a common problem to solve is the registration between datasets.
Indeed merging several point clouds or fitting a morphable model,
require to perform an accurate and robust registration. There is a
vast literature dedicated to registration algorithms. However, the
most relevant methods rely on the ICP algorithm [9, 54] and prob-
abilistic modelling for parameters estimation [49, 24, 14, 18, 31].
We review standard optimisation algorithms in paragraph 2.3.1 and
registration methods in sections 2.3.2 and 2.3.4.

2.3.1 Optimisation
Many optimisation algorithms used for RGB images (section 2.1)
are based either on Stochastic Newton Optimization (SNO) [10],
Linear Shape and Texture Fitting (LiST) [38] or Inverse Composi-
tional Image Analysis (ICIA) [39, 6] algorithms. The evaluation of
these methods depends on their application. For instance, SNO is
reported to be more accurate but it lacks efficiency compared with
ICIA [27]. Improvements to these algorithms have been mainly
achieved by adding additional information to the cost function such
as multiple features from a single image [40] or using multiple im-
ages [41, 1, 55, 52]. This multiple feature/image strategy provides
a fitting algorithm more robust to local minimum, perhaps due to
the smoothness of the overall cost function achieved by the extra
information used. However, assumptions about known correspon-
dences in between the input images and the model are introduced
in order to match the extra features. In practice, this correspon-
dence is difficult to achieve and mismatches during the starting of
the fitting process affect the robustness and accuracy of the fitting
algorithm.

2.3.2 Iterative Closest Point (ICP)
For RGB-D images (section2.2), registration methods such as the
ICP algorithm [9, 54, 42] have been proposed for solving the cor-
respondence problem and the fitting process itself [45]. The ICP
algorithm was introduced by Besl et al. [9] and Zhang [54]. It



is based on a point-to-point correspondence between the two data
sets performed using the nearest neighbour criteria. Once the corre-
spondences have been found the transformation is calculated. These
two steps (correspondence-transformation) are iterated until con-
vergence criterion is reached. Many improvements have been made
to the basic ICP algorithm (refer to [42]). However, they are still
sensitive to outliers and initialisation. ICP requires the initial po-
sition of the two point sets to be adequately close. This is usually
achieved by matching manually labelled points in both sets [53, 2].

2.3.3 EM-like algorithms
Robustness to outliers and initialisation has been improved by us-
ing probabilistic methods. The registration problem can be rede-
fined as a density estimation problem. Chui et al. [14] for in-
stance, proposed to treat one of the data sets (observations) as sam-
ples of the density function modelled with the reference data set.
This modelling comes from the assumption that observations are
uniformly distributed around points in the reference dataset. The
problem can be solved as a two step optimisation (correspondence-
transformation) but in an EM-like fashion where the centroids of
the density function are estimated with the transformation parame-
ters. The sensitivity to outliers inherent to Expectation Maximiza-
tion algorithms is compensated by adding an extra kernel to model
the outliers. Myronenko et al. [31] and Ganger et al. [18] also pro-
posed algorithms following this strategy. The main drawback of
those algorithms is that they rely on the availability of a dense set
of observations. This implies a many-to-one correspondence which
is not true when the number of observations is roughly the same (or
less) than the number of points in the reference set.

2.3.4 Matching probability density functions
A different approach is to consider the two sets as separate prob-
ability density functions. The parameter estimation is then per-
formed by optimising a similarity measure between the two den-
sity functions [13]. Tsin et al. [49] for instance, used the cross
correlation between the two density functions as a measure of sim-
ilarity while Hasanbelliu et al. [19] proposed a registration algo-
rithm based on the Cauchy-Schwarz divergence. A good overview
is proposed by Jian et al. [24] showing the relationship between
divergence functions used to measure the similarity between two
pdfs [8].

The Euclidean distance has the advantage of having a closed form
solution when density functions are modelled as Gaussian Mix-
tures. Having two density functions p′(x|Θ) (model) and p(x) (ob-
servations), the Euclidean distance is then defined as:

L2(Θ) =
∫
Rdx (p(x)− p′(x|Θ))2 dx

=
∫
Rdx p2(x)−2 p(x) p′(x|Θ)+ p

′2(x|Θ) dx
(1)

Tsin et al. [49] maximises the correlation between the pdfs to esti-
mate the parameters of interest Θ:

C(Θ) =
∫
Rdx

p(x) p′(x|Θ) dx (2)

Jebara et al [23] coined this correlation as the expected likelihood
kernel since it is the expectation of one distribution (e.g. p) w.r.t.
the other (e.g. p′). When the parameters Θ correspond to the rigid
affine transformation parameter (rotation and translation) then the
estimate with the cost function C and L2 is the same:

Θ̂ = argmax
Θ

C(Θ) = argmin
Θ

L2(Θ) (3)

This expression comes from the fact that the term
∫

Rdx p(x)2dx
does not depend on Θ and

∫
Rdx p′(x|Θ)2dx remains the same for

all rigid transformation Θ. However, this equivalence is not true
when Θ does not correspond to a rigid transformation.

Using observations {x(i)}i=1,··· ,n such that ∀i, x(i) ∼ p(x), the em-
pirical density function defined with the Dirac kernel as

p̂(x) =
1
n

n

∑
i=1

δ (x−x(i))

can be used to substitute the pdf p in the cost function C [24]:

CE(Θ) =
1
n

n

∑
i=1

p′(x(i)|Θ) (4)

Similarly, Scott [46] defines the cost function L2E approximating
L2:

L2E(Θ) =
∫
Rdx

p
′2(x|Θ) dx−2 CE(Θ) (5)

Jian et al. [24] uses the L2E distance with a standard non-linear
optimization function from Matlab to estimate Θ.

Note that approximations of C and L2 with CE and L2E respec-
tively are good approximations as long as the empirical density
function p̂ is a good approximation of p. This may not be the case
when the observations are sparse and/or not well uniformally sam-
pled from p.

3. MORPHABLE MODEL REGISTRATION
Section 3.1 presents an overview of our approach and introduces
the notations used in this paper. The details about the explicit ex-
pression of the L2 distance for Gaussian mixtures is reported in
section 3.2. This distance is used to estimate the rigid transfor-
mation (rotation and translation) between the observations and the
morphable model (section 3.3) and it is extended to estimate the
morphable parameters in a Bayesian framework (section 3.4).

3.1 Overview & notations
Our 3D face reconstruction process can be described in four steps:
acquisition, preprocessing, rigid registration (shape alignment) and
morphable shape model fitting (see Figure 1). A depth map is cap-
tured with a kinect sensor and the region of the depth map cor-
responding to the face is detected and converted to a point cloud.
This process is automatically done by applying a face detector [51,
28] and a skin detector algorithm in the region of the image. We
assume that the person is in the foreground in between a specific
range of distances from the sensor (50 and 120 cm). The resulting
point cloud is noted {ui}i=1,··· ,n and each vertex ui is a point in R3.
We define the random variable x ∈R3 and its pdf is modelled using
a Gaussian Kernel density estimate fitted on the observations:

p(x) =
n

∑
i=1

πi G(x;ui,Σi) (6)

G(x;ui,Σi) is the Gaussian probability density function centered on
the vertex ui with a 3×3 covariance matrix Σi. The weights πi are
chosen equiprobable πi =

1
n . The pdf p(x) corresponds to the target

distribution.

The 3D shape Face Model1 provided by Basel University [36] pro-
vides the average 3D shape noted µ = {µi}i=1,··· ,n′ that is com-
1http://faces.cs.unibas.ch/bfm/.
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Figure 1: Overview: a 3D morphable model is fitted automatically to a point cloud captured using a Kinect Sensor.

posed of n′ vertices µi ∈ R3 ∀i, a set of J principal shape com-
ponents noted {e j} j=1,··· ,J , associated with the standard deviations
{σ j} j=1,··· ,n′ . If the target pdf p(x) corresponds to a face, the model
provides a suitable family of pdfs noted p′(x|Θ), that can explain
the target p:

p′(x|Θ) =
n′

∑
i=1

π
′
i G(x,u

′
i,Σ

′
i) (7)

where the vertices {u′i}i=1,··· ,n′ are created with the morphable model
considering a rigid affine transformation (rotation R and translation
t):

u
′
i = R (µi +

J

∑
j=1

α j e ji)+ t (8)

The problem addressed in this paper is the robust estimation of Θ

corresponding to the rigid transformation (R and t) and the coordi-
nates {α j} j=1,··· ,J on the model. This is performed by minimising
the L2 distance between p and p′. Section 4 gives more details on
the design of p and p′.

3.2 Matching Gaussian mixtures with L2

To compute the L2 distance between the two Gaussian mixtures
p and p′, we use the closed form solution for the integral of the
product of two Gaussian density functions [46, 20]:

< Gi|G
′

k >=
∫
RD

G(x,ui,Σi) G(x,u
′

k,Σ
′

k) dx

=
1

(2π)
D
2

√
|Σi +Σ

′
k|

exp

(
−

q(ui,u
′

k)

2

)

(9)

where,

q(ui,u
′

k) = uT
i Σ
−1
i ui +u

′T
k Σ

′−1
k u

′
i−uT Σ−1u

with
Σ−1 = Σ

−1
i +Σ

′−1
k

u = Σ (Σ−1
i ui +Σ

′−1
k u

′
i)

(10)

The L2 distance can then be computed explicitly:

L2(Θ) =
n

∑
i=1

n

∑
k=1

πiπk < Gi|Gk >

+
n′

∑
i=1

n′

∑
k=1

π
′
i π
′

k < G
′
i|G

′

k >

−2
n

∑
i=1

n′

∑
k=1

πiπ
′

k < Gi|G
′

k >

(11)

Note that the parameters Θ only occur in the terms < G
′
i|G

′

k > and
< Gi|G

′

k >.

3.3 Rigid transformation estimation
We first estimate the rigid transformation parameters using the mean
face (e.g. α j = 0, ∀ j in equation (8)). As stated in equation (3),
the estimated rigid transformation is the same when minimising the
L2 distance and maximising the cross-correlation C. For Gaussian
mixtures, this cross-correlation is defined as:

C(Θ) =
n

∑
i=1

n′

∑
k=1

πiπ
′

k < Gi|G
′

k > (12)

and the estimation is performed such that(
R̂, t̂
)
= argmaxΘ=(R,t,α1=0,··· ,αJ=0)C(Θ) (13)

This optimisation can be solved using a Mean Shift algorithm [3].
An example of the alignment performed between the kinect data
and the average shape of the face model using this algorithm is
shown in Figure 1.

3.4 Bayesian Morphable shape fitting
Given the estimate

(
R̂, t̂
)
, we need now to estimate the parameters

{α j} j=1,··· ,J and this can be done by minimising the L2 distance:

α̂ = argmin
Θ=(R̂,t̂,α)L2(Θ) (14)

As the α parameters do not encode a rigid transformation, we do
not substitute the objective function L2 by C for this estimation.

As seen in the review (paragraph 2.1), Bayesian estimation has
been popular for fitting morphable models using a Gaussian prior
on the parameters {α j} j=1,··· ,J :

p(α = (α1, · · · ,αJ)) ∝ exp

(
−1

2

J

∑
j=1

α2
j

σ2
j

)
(15)



where σ2
j is the eigenvalue associated with the principal compo-

nent e j both provided with the morphable model. We have already
shown [5] that for fitting 2D morphable model of hands, prior infor-
mation was a valuable addition to the L2 distance for performing
an accurate estimation. To this end, we interpret the distance L2 as
log-likelihood so we can write the posterior as:

p(Θ|{ui}i=1,··· ,n) ∝ p(α) · exp

(
−L2(Θ)

2σ2
d

)
(16)

And the estimation is then performed by:

α̂ = arg min
Θ=(R̂,t̂,α)

{
L2(Θ)

σ2
d

+
J

∑
j=1

α2
j

σ2
j

}
(17)

The variance σ2
d is set experimentally and allows us to control the

influence of the likelihood with the prior. In section 5.2 we illus-
trate the relation used for computing this variance, how it is related
to the bandwidth of the kernels in the density function and the error
tolerance in the optimisation.

4. SHAPES WITH GAUSSIAN MIXTURES
Modelling surfaces in the 3D space using Gaussian mixtures is ad-
dressed in sections 4.1 and 4.2. Section 4.3 proposes to reduce the
computational cost of using the L2 distance and paragraph 4.4 ex-
plains the algorithm used for its optimisation.

4.1 Model Gaussian Mixture
The shape model is a set of vertices connected by edges defin-
ing triangles (cf. figure 2). The means {u′k}k=1,··· ,n′ are selected
as the barycentre of these triangles and the covariance matrices
{Σ′k}k=1,··· ,n′ are also computed automatically using the model (cf.
equation (7)). Each covariance matrix Σ

′

k is a positive definite ma-
trix that can be decomposed into the form Σ

′

k = QDQT where Q is
the matrix containing the eigenvectors and D is a diagonal matrix
of eigenvalues. The eigenvectors represent the principal directions
−→n 2,−→n 3 and the normal to the surface −→n 1. The eigenvalues control
the fuzziness of the kernel in each direction:

Σ
′

k =
( −→n 1|−→n 2|−→n 3

) a2 0 0
0 b2 0
0 0 c2

( −→n 1|−→n 2|−→n 3
)T

(18)
Figure 2 shows the directions−→n 1,−→n 2 and−→n 3. The values for b and
c can be easily computed as the semi axes of the ellipse that best
fit the triangle. The fuzziness along the normal (−→n 1) on the other
hand, is defined as a = h where h is the bandwidth we choose for
all the kernels and it is related to the error we are willing to tolerate
between the observations and the model. The average shape of the
model (µ) and the eigenvectors (e j) are updated according to the
new position of the kernels (the barycentre of the triangles instead
of the vertex). The use of non-isometric covariance matrices helps
in modelling a density function that represents better the shape in
the point cloud [4].

4.2 Target Gaussian Mixture
The edges between vertices captured with the kinect are assumed
unknown and some observations are outliers (points that do not be-
long to the shape of interest). Hence the pdf p computed from the
observations {uk}k=1,··· ,n (eq. (6)) is modelled with isotropic ker-
nels centred at each data point Σi = h2I (I the identity matrix). The
parameter h is the same as defined earlier with the model (section
4.1) and has a specific role in our algorithm (section 4.4).

Figure 2: Modelling the pdf, reducing the number of vertices
that describe the shape model

4.3 Reducing computations
Our cost function L2 is a function of Θ with n× n′ Gaussian ker-
nels. Downsampling the mesh model (i.e. reducing n′) can be done
off-line to reduce computation cost. For that purpose, we used a
probabilistic method based on the statistical self organising map
that estimates the modes of a Gaussian mixture while preserving
the spatial relationship between them [50]. The resulting position
for the kernels are used in our modelling for defining the density
function of the shape model. Downsampling the depth map can
also be used to reduce n in the target distribution.

4.4 Optimisation
In practice we estimate iteratively the rigid transformation and the
morphable model parameters in a loop such that the final solution
Θ̂ solves this optimisation:

Θ̂ = argmin
Θ

{
L2(Θ)

σ2
d

+
J

∑
j=1

α2
j

σ2
j

}
(19)

For 3D faces, the mean face is a good enough representation of the
class for aligning the model with the observations. Only one itera-
tion of the loop is often required for aligning and fitting the model
with the observations. In the case of estimating the rigid transfor-
mation, the Mean Shift algorithm is used with an annealing strategy
for optimisation [37]. The parameter h is used as the temperature
[47]: starting with a large bandwidth h = hmax, the bandwidth is
decreased using a geometric rate β until the minimum value hmin
is reached. When estimating the parameters α of the morphable
model, we also use h as a temperature to introduce gradually non-
convexity in the cost function (eq. (19)) since the prior term is
convex.

5. EXPERIMENTAL RESULTS
Our algorithm is assessed with the 3D morphable shape face model
provided by Basel University [36] (truncated to keep only the face
region). This model has been computed using PCA on 3D meshes
of neutral faces (100 males, 100 females) captured with a high-end
3D scanner, and it provides users with a mean mesh face and all
eigenmeshes with their eigenvalues. The coordinates α on these
eigenmeshes are estimated with our algorithm (as well as the ro-
tation and translation for alignment) and it is assumed here that
any neutral face can be well reconstructed with this model. Our
approach is tested on synthetic data generated from the model (sec-
tion 5.1) and experiments using real data captured using the Kinect
sensor are reported in section 5.2 (note that in this case, the target
faces are different from the faces used to compute the PCA model).

5.1 Fitting 3D face model to synthetic data
A set of synthetic target faces are created from the model by ran-
domly generating a set of parameters αs using J = 10 eigenvectors



(these constitute the ground truth parameters αGT ). The rotation
and translation between the model and the target is known and only
the parameters α are estimated. In this experiment, the covariance
matrices are chosen spherical as Σi = h2I ∀i and Σk = h2I ∀k be-
cause the two point clouds have been generated from the same syn-
thetic 3d model in this experiment. This is not the case when we
use the Kinect camera to capture the observations for which we
will use adaptive variable covariance matrices (see section 5.2) as
explained in section 4.1.

The bandwidth σd for the likelihood term (see section 3.4) is com-
puted (for all experiments in this paper) by:

σd =
λL2(Θo,h)

J
(20)

where λ is a parameter that we use to control the influence of the
prior over the likelihood. We set λ = 0.05 for all the experiments.
Starting from an initial guess randomly selected, we estimate α

starting with a large bandwidth h = hmax = 1.5cm that is iteratively
decreased with geometric rate β = 0.8 until h = hmin = 2.5mm. We
initialise σd using Θo and hmax. Once the algorithm converges for
Θ̂ we update σd according to the new values for h and Θo = Θ̂.

Figure 3 shows several results of 3D face reconstruction. We can
visually recognise that the estimated face using the fitting algorithm
is similar to the target face in all four examples.

Figure 3: Fitting synthetic faces: target face (observations, top
row), random starting guess for initialising the algorithm (mid-
dle row) and estimated face with our algorithm (bottom row).

Figure 4 shows the error surface between the target and the esti-
mated reconstruction. Note that we use a truncated model: neck
and ears areas have not been matched. The errors on the face (in
light blue) correspond to areas that are not well captured in the
J = 10 eigenvectors that we have used for reconstruction in this ex-
periment. Convergence of the algorithm to the optimal solution is
tested by running experiments with different starting points (ran-
domly chosen) and the error is computed between the estimated
α and the ground truth. In all the experiments the estimates con-
verge to the ground truth with a root mean square error smaller than
0.0054.

Target Starting Result Error Surf.

Figure 4: Surface error computed between the target face and
our reconstruction.

5.2 Fitting 3D face model to Kinect
We have just shown that the algorithm converges well in controlled
conditions. In real applications however, the observations originate
from a different process than the model and more care needs to be
given to modelling the covariance matrices. When the data are not
uniformly sampled (or are sparse), the covariance matrices cannot
be chosen isotropic but need to be chosen such that the pdfs ap-
proximate well the surface shapes. Covariance matrices are next
set as explained in sections 4.1 and 4.2. The number of kernels is
reduced as described in section 4.3.

5.2.1 Data Capture and Preprocessing
The Microsoft Kinect sensor provides a depth map and a colour
image of the scene with a resolution 480× 640 pixels. The field
of view captured is within a range of 50cm and 4m approximately.
To obtain the point cloud of the face, we first select the region of
the image within a range of 50cm to 120cm from the sensor (see
example in Fig. 5b). The face region is then detected and converted
to a point cloud by using a face and skin detector (Fig. 5c).

(a) depth map (b) selected region (c)

Figure 5: Preprocessing for generating the point cloud of the
face (target): depth map (a) as captured by the RGB-D sensor,
selection of the scene (b) in close range (between 0.5m and 1.2m
from the sensor), extracted face and skin region (c).

5.2.2 Kinect point cloud alignment
A crude estimate of the translation between the target and the model
point clouds is computed by matching their barycenters in the 3D
space. This estimation is used as a starting guess for our algorithm
for rigid transformation. The settings used for h in the optimisation
are hmax = 1cm and hmin = 5mm. Both datasets are downsampled
with a ratio of 1 : 10 in order to reduce the number of kernels in the
density functions and speed up the optimisation process.

Figure 6 shows an example of the alignment process. Before align-
ment (bottom row) and after alignment (top row). We evaluate nu-
merically the performance of the alignment by comparing the error
between the observed point cloud and the average shape before and
after the alignment. The error is computed as the Euclidean dis-
tance of each point in the observed data set to its closest triangle
in the mesh of the average shape. Figure 7 shows the histogram of



Figure 6: Shape Alignment: different views of the point clouds
(model (grey) and observations (red)) after alignment (top
row). Same point clouds displayed before alignment (bottom
row).

the error of the aligned shape (red line) and before alignment (blue
dash). Note the number of pixels closer to the shape model (error
close to 0) increases after the alignment.
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Figure 7: Histogram of the errors between the observations to
the average shape: before alignment (blue) and after (red). The
sum of the absolute error is 6.3456×106 (after alignment) com-
pare with 1.7054×107 (before alignment).

5.2.3 3D Morphable Shape fitting on Kinect point cloud
Once the target face is aligned to the shape model, the αs are esti-
mated using average shape (cf. Figure 8) as a starting guess in our
algorithm (e.g. α j = 0, ∀ j ∈ {1, · · · ,J}) and with the following
settings: hmax = 1.5cm, hmin = 5mm and J = 20.

Figure 8: Average Shape used as initial guess.

Figure 9 shows the reconstructed faces for several people (none
were used to train the morphable model). The last two faces (F5 and

F6) correspond to the same person appearing behind occluding ob-
jects. The general shape of the faces is well recovered while some
detailled areas are sometimes not accurate (e.g. eyes or mouths)
that are noisy in the kinect data, and also may not well be described
by the first J = 20 eigenvectors for these people in this experiment.
Figure 10 compares the reconstruction of F5 with a capture using

Figure 9: Estimated reconstructed faces (labelled F1 (top), to
F6 (bottom)) from 3 viewpoints shown with the colour image
captured with the Kinect (left).

a more accurate laser scanner (Minolta vivid 700). As can be seen,
the laser scan is not perfect either and the reconstruction with the
model has the advantage of recovering a full mesh without any hole.

The Euclidean distance (error) between each point in the target to
its closest triangle in the reconstructed shape is computed, and the
histogram of these errors are shown in Fig. 11. In all the experi-
ments, the error is significantly reduced after the fitting: the vari-
ance of the distribution of the error is smaller for the data computed
using the reconstructed face. In both cases, the 90% of observations
are within a distance of 3mm after the fitting is done (compare with
50% before the fitting is done, see Figure 12).



Figure 10: At the top, profil view of F5 : laser scan (left), re-
construction (middle) and Kinect point cloud (right). At the
bottom, frontal view of F5: reconstruction (left) and laser scan
(right).
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Figure 11: Histograms of the errors between the observations
and the reconstructed face (red line) and the observation and
the average shape of the model (blue dash) for F1 (left) and F2
(right).
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Figure 12: Percentage of observations below a distance between
1 and 5mm (reported on the absissa) for F1 (left) and F2 (right),
before fitting (blue dash) and after fitting (red line).

Figure 13 shows the estimated J = 20 coordinates normalised with
the eigenvalues for faces F1 to F6 (cf. figure 9). We can note that
the estimates for F5 and F6 are close to each other corroborating
the fact that the same person appears in both captures. Despites the
occlusions, the algorithm converges towards the same solution for
F5 and F6.
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Figure 13: Values of the J = 20 coordinates of parameter α

normalised with the eigenvalues computed for faces F1 to F6.

We have computed the Mahalanobis distance (with Λ diagonal ma-
trix of the eigenvalues):

di, j =
√

(α̂Fi− α̂F j)T Λ(α̂Fi− α̂F j)

for all faces F1 to F6. The results are shown in Table 1. The dis-
tance di, j is smaller when the parameters correspond to the same
individual (e.g. F5 and F6, d5,6 = 0.0888) than when considering
different people (e.g. F1 and F2, d1,2 = 0.3596). Although these
experiments are preliminary and require further analysis, they sug-
gest the feasibility of robust identification using noisy depth sen-
sors.

Table 1: Malahanobis distance di, j between the estimated pa-
rameters of faces F1 to F6 (Figure 9).

Faces F1 F2 F3 F4 F5 F6

F1 0 0.3596 0.5374 0.6925 0.7609 0.7815
F2 0 0.3396 0.5041 0.6141 0.6286
F3 0 0.3885 0.4978 0.5155
F4 0 0.5508 0.5475
F5 0 0.0888
F6 0

6. CONCLUSION
We have proposed a new cost function to perform 3D morphable
model alignment and fitting. This cost function is composed with
the robust L2 distance between pdfs, and that does not require
any correspondence to be defined between the two point sets to
be matched. In addition, the cost function is augmented with prior
information that can be available with the model. Note that the al-
gorithm was tested using individuals that not were included in the
original model. Our approach is robust and unsupervised, how-
ever it is computationally expensive when the two point clouds to
match are far from each other. Several directions can be explored
to improve efficiency: prior information would help to initialise the
optimisation with a good initial guess (e.g. the past estimate in
a tracking context), and multi-resolution approaches reducing the
number of kernels to compute could also be used (cf. section 4.3),
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