\textbf{\textit{L}_2\textit{ Divergence for Robust Colour Transfer}}

Mairead Grogana,**, Rozenn Dahyota

aSchool of Computer Science \& Statistics, Trinity College Dublin, Ireland

\textbf{ABSTRACT}

Optimal Transport (OT) is a very popular framework for performing colour transfer in images and videos. We have proposed an alternative framework where the cost function used for inferring a parametric transfer function is defined as the robust \textit{L}_2\textit{ divergence between two probability density functions} (Grogan et al., 2015). In this paper, we show that our approach combines many advantages of state of the art techniques and outperforms many recent algorithms as measured quantitatively with standard quality metrics, and qualitatively using perceptual studies (Grogan and Dahyot, 2017). Mathematically, our formulation is presented in contrast to the OT cost function that shares similarities with our cost function. Our formulation, however, is more flexible as it allows colour correspondences that may be available to be taken into account and performs well despite potential occurrences of correspondence outlier pairs. Our algorithm is shown to be fast, robust and it easily allows for user interaction providing freedom for artists to fine tune the recoloured images and videos (Grogan et al., 2017).

\textcopyright 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Colour transfer refers to a set of techniques that aim to modify the colour feel of a target image or video using an exemplar colour palette provided by another image or video. Most techniques are based on the idea of warping some colour statistics from the target image colour distribution to match those of the palette image colour distribution. The transfer (or warping) function \(\phi \), once estimated, is then used to recolour a colour pixel value \(x \) to \(\phi(x) \).

Many factors can be considered when assessing a colour transfer technique, with the most important ones summarised in Figure 1. The first consideration is the type of data processed by the system. While most applications process images, they can require considerable effort to ensure that the colour transfer function can be applied to video data without creating temporal artifacts (Bonneel et al., 2013). Many techniques also either consider target and palette images with overlapping content (Xia et al., 2017; Park et al., 2016; Oliveira et al., 2015; Hwang et al., 2014; HaCohen et al., 2011), or those with completely

**Corresponding author

\textit{e-mail: mgrogan@tcd.ie} (Mairead Grogan)
different content (Pitié et al., 2007; Bonneel et al., 2015). For the former, pixel correspondences can be used to enhance the colour transfer estimation, while purely statistical properties of the images are considered in the latter case. The quality of the colour transfer results generated is also an important factor, and can be assessed by considering whether the application successfully transfers the colour from the palette to the target image, whether the results are good even in the case of bad pixel correspondences (if used), and whether the results generated are repeatable and consistently successful. As many techniques aim to work in real time, speed is also an important aspect. With the increased use of parallel architectures, the ability to parallelise some or all of the computation is also advantageous. The final factor to consider is the type of user interface that will be provided. Methods typically fall into one of two categories - automatic methods and those that allow for user interaction. While automatic methods generate result images easily, they greatly reduce the artistic freedom of the user. This is the main drawback of automatic methods, including many of those based on neural networks, which have become popular in recent years (He et al., 2017; Luan et al., 2017; Liao et al., 2017).

In this paper we explore a colour transfer technique that tries to satisfy all of the requirements shown in Figure 1. Our colour transfer approach can be applied to target and palette images both with and without pixel correspondences, and can be easily applied to video content (Grogan and Dahyot (2015)). Recolouring using our parametric transfer function is highly parallelisable, and once estimated the transfer function can be easily stored and reused. Our L_2E based cost function is robust to correspondence outliers and our colour transfer results outperform other state of the art techniques. Finally, this paper presents colour transfer results automatically generated given a target and palette image, with many and without any pixel correspondences between the two input images. We have also recently shown that our colour transfer algorithm can be efficiently tuned further by a user (or artist), specifying a small number of correspondences to minimize interaction (Grogan et al., 2017).

In the next section, we present relevant past work in the area of colour transfer and many of these past ideas are integrated as part of our robust modelling with the L_2E divergence (Section 3). Performance of our approach is then compared qualitatively and quantitatively with state of the art techniques in Section 4.

2. State of the art

The body of work in recolouring is very large and the reader is referred to this recent exhaustive review by Faridul et al. (2014). Early work on colour transfer started with registering statistical moments of colour distributions (Section 2.1) using a parametric affine formulation of the transfer function ϕ. This methodology soon shifted to using the Optimal Transport (OT) framework (Section 2.2). OT techniques use non-parametric estimates of colour distributions, and the resulting algorithms for colour corrections do not provide an explicit expression of ϕ but instead an estimated correspondence $(x, \phi(x))$ for every colour pixel x. This can be memory consuming when capturing ϕ on a 256^3 discrete RGB colour space for instance. Alternative methods (Section 2.3) instead propose to capture colour distributions with Gaussian Mixture models and use some correspondences (Section 2.4) between Gaussian components of the palette and target distributions.

2.1. Registration of colour statistical moments

The pioneering work of Reinhard et al. (2001) proposed to use a warping function ϕ with parametric form:

$$\phi(x; \theta = [G, o]) = Gx + o$$ \hspace{1cm} (1)$$

with the vector o representing an offset and the 3×3 diagonal matrix G representing the gains for each colour channel. The estimation of the parameter θ is performed by registering the probability density functions of the colours in the palette and target images, denoted p_p and p_t, represented as simple multivariate Gaussians ($p_p \equiv N(x; \mu_p, \Sigma_p)$ and $p_t \equiv N(x; \mu_t, \Sigma_t)$) with diagonal covariance matrices Σ_p and Σ_t. Since Normal distributions are fully described by their first two statistical moments, means and covariance matrices, the optimal mapping ϕ is specified by the solution $\hat{\theta}$ that maps the empirical estimates
of \((\mu, \Sigma)\) computed using the pixel values \(\{x^{(i)}_k\}_{i=1, \ldots, n}\) in the target image, to the empirical estimates of \((\mu_p, \Sigma_p)\) computed using the pixel values \(\{x^{(i)}_k\}_{i=1, \ldots, n_p}\) in the palette image. Pitié and Kokaram (2007) proposed an OT solution to this affine transfer function modelling \(p_p\) and \(p_t\) as simple multivariate Gaussians likewise. However these two methods use affine transformations which are limited in the type of results that they can achieve, therefore recent methods have considered more complex transformations.

2.2. Optimal Transport

Monge’s formulation (Villani, 2009) sets the deterministic decoupling \(y = \phi(x)\) linking two random variables \(y \sim p_t(y)\) and \(x \sim p_p(x)\) imposing the solution \(\phi\) that verifies:

\[
p_p(x) = p_t(\phi(x)) \times [\det \nabla \phi(x)] \tag{2}
\]

In practice, finding \(\phi\) such that Equation (2) is true is difficult when considering multidimensional space (Villani, 2003). A solution when \(x \in \mathbb{R}\) and \(y \in \mathbb{R}\) can however be defined with the cumulative distribution of colours in the target and palette images \(P_t\) and \(P_p\):

\[
\phi(x) = P_t^{-1} \circ P_p(x) \tag{3}
\]

where \(P_t\) is strictly increasing (i.e. \(p_t(y) > 0, \forall y \in \mathbb{R}\)). \(P_t\) and \(P_p\) can be approximated with cumulative histograms for instance. Such a process for finding the warping function \(\phi\) is powerful since no strong hypotheses are made about the distributions (as opposed to the Gaussian assumption in Section 2.1). Moreover, no parametric form is imposed on the warping function \(\phi\).

A solution to Eq. (2) becomes non trivial in multidimensional colour spaces. Of particular interest is the pioneering work of Pitié et al. (2005) who proposed an iterative algorithm that first projects the colour pixels \(\{x^{(k)}_k\}\) on a 1D Euclidean space, and then estimates \(\hat{\phi}\) using Eq. (3) and applies it to move all values \(\{x^{(k)}_k\}\) along the direction of the 1D space. This operation is repeated with different directions in 1D space until convergence. The intuitive explanation for this approach comes from the Radon Transform (Pitié et al., 2007): if Equation (3) is verified in all 1D projective spaces, then Equation (2) will be verified in the multidimensional space. However, this approach alters the colours of the target image so they match the colour distribution of the palette image exactly, which is not ideal when the colour distributions of the images are very different, and causes grainy artifacts to appear in the gradient of the result image. The subsequent extension by Pitié et al. (2007) proposed a post processing step to correct this artifact and ensure that the gradient field of the recoloured target image is as close as possible to the original target image. Similar to (Pitié et al., 2007), Bonneel et al. (2015) recently proposed to use a Radon Transform inspired strategy for colour transfer in their OT method. Their approach is a generalisation of the method proposed by Pitié et al. which uses 1-D Wasserstein distances to compute the barycentre of a number of input measures. The OT problem is formulated with a cost function \(c\):

\[
\tilde{\pi} = \inf_{\pi} \int \int c(x, y) \pi(x, y) \, dx \, dy \tag{4}
\]

where the marginals of the joint density function \(\pi\) are \(p_t\) and \(p_p\). Bonneel et al. (2015) used the \(L_2\)-Wasserstein distance with the Euclidean distance \(c(x, y) = ||x - y||^2\): note that this \(L_2\) Wasserstein distance between random vectors \(x\) and \(y\) is different to that used in our framework, where our \(L_2\) refers to the Euclidean distance between marginals \(p_t\) and \(p_p\) (see Section 3). When this method is used for colour transfer between target and palette images, it matches only the chrominance channels of the target and palette images, leaving the target image’s luminance channel unchanged after recolouring. As well as colour transfer, this OT approach can also be used to find the barycentre of three or more weighted image palettes.

Histograms are often employed to approximate the colour distributions of images (Neumann and Neumann, 2005; Papadakis et al., 2011; Pouli and Reinhard, 2011) and used in OT methods (Freedman and Kisilev, 2010; Ferradans et al., 2013; Pouli and Reinhard, 2011). Similar to the method proposed by Pitié et al. (2005), these discrete methods have a tendency to introduce grainy artifacts in the gradient of the result image, and like Pitié et al. (2007), recent methods have also proposed adding a step to impose that the resulting spatial gradient of the recoloured image remains similar to the target image (Xiao and
Ma, 2009; Papadakis et al., 2011; Ferradans et al., 2013). Alternatively, other methods have proposed to relax the constraint that enforces the distributions of the recolored target image and palette image to match exactly (Freedman and Kisilev, 2010; Pouli and Reinhard, 2011; Ferradans et al., 2013). Bonneel et al. (2015) propose using a gradient smoothing technique to reduce any quantisation errors that appear in their results (Rabin et al., 2011). Frigo et al. (2015b) propose to remove artifacts by first estimating an OT solution and using it to compute a smooth Thin Plate Spline (TPS) transformation to ensure that a smooth parametric warping function is used for recolouring, allowing them to apply their method to video content easily.

2.3. Using Gaussian Mixture models

Gaussian Mixture models are often used to model the colour distribution of images in colour transfer applications. Jeong and Jaynes (2007) use colour transfer techniques to harmonise the colour distributions of non overlapping images of the same object for tracking purposes in a multiple camera setting. The colour chrominance (2D) distribution is modelled using Gaussian Mixture models, and the transfer function is parametric with an affine form estimated by minimising the Kullbach-Leibler divergence between Gaussian components using a robust procedure to tackle outlier pairs. Xiang et al. (2009) model the colour distribution of the target image with a Gaussian mixture estimated by an EM algorithm. Each Gaussian component in the mixture defines a local region in the target image, and each segmented local region is recoloured independently using multiple palette images, likewise segmented in regions using Gaussian Mixture model fitting of their colour distributions. Colour transfer is performed by associating the best Gaussian component from the palettes to the Gaussian target region using the Gaussian affine transfer function proposed by Reinhard et al. (2001). Segmentation using alternative approaches such as mean shift (Comaniciu and Meer, 2002) and K-means (Xu et al., 2005) is also tested to define the colour Gaussian mixtures. This approach relies on homogeneous colour regions each captured with one multivariate normal in the 3D colour space. Localised colour transfer using Gaussian Mixture mod-

els between overlapping colour images have also been proposed for colour corrections, motion deblurring, denoising, gray scale coloring (Tai et al., 2005).

2.4. Using correspondences

Other methods propose taking pixel correspondences into account when finding the colour transformation (Oliveira et al., 2015; HaCohen et al., 2013; Hwang et al., 2014; Park et al., 2016; Vazquez-Corral and Bertalmio, 2014). Oliveira et al. (2015) proposed to find the mapping of 1-dimensional truncated Gaussian Mixture model representations computed for each colour channel of the target and palette images. For color correction of images capturing a scene taken under the same illumination, Vazquez-Corral and Bertalmio (2014) use color correspondences to compute a tonal transformation function consisting of both a linear 3x3 matrix and gamma correction power terms. They show it performs well when images have been captured using different cameras, different camera settings, and different white balance and exposure. Frigo et al. (2015a) tackle the problem of tonal fluctuation in video by combining a 6 parameter colour warping function \(\phi \), similar to that proposed by Vazquez-Corral and Bertalmio (2014), with motion estimation to perform a fast, temporally weighted colour correction of the video frames. Park et al. (2016) propose a technique to ensure color consistency across photo collections, estimating white balance and gamma correction across images. Their algorithm is robust to correspondence outliers and can achieve good results with less correspondences than similar techniques (HaCohen et al., 2013). Xiao et al. (2006) also tackle color inconsistencies across images due to imaging conditions, with an emphasis on maintaining colour consistency, but also ensuring individual images maintain high definition gradients and wide dynamic range. But all of these algorithms estimate warping functions controlled by a small number of parameters and these cannot successfully tackle more complex color mapping needed in unconstrained scenario of applications of color transfer. Hwang et al. (2014) on the other hand, use moving least squares to estimate an affine transformation for each pixel in the target image with the least squares algorithm. This tech-
nique can correct a larger variety of color differences between images, include large non linear color differences. To tackle sensitivity to outlier correspondences, only subsets of the correspondences are used as control points and a probabilistic framework is deployed to remove correspondences that are likely to be incorrect. However all of these methods are only applicable when the correspondences between target pixels and palette pixels are available.

3. Robust Colour Transfer with \mathcal{L}_2E

We propose to solve colour transfer by estimating the warping function ϕ that minimizes a divergence between two probability density functions. Unlike the OT formulation, which depends on two random vectors x and y (see Eq 4), only one random vector y appears explicitly in our modelling, and both the target pdf p_t and palette pdf p_p are candidate pdfs for random vector y defined in the colour space \mathbb{R}^3. Our approach to solving colour transfer is to propose a parametric model $p_t(y|\theta)$ for the target distribution such that the parameter θ controls the mapping function ϕ. We propose to formulate the colour transfer problem as a parameter estimation one:

$$
\hat{\theta} = \arg \min_{\theta} \left\{ \mathcal{L}_2E = \|p_t - p_p\|^2 = \int (p_t(y|\theta) - p_p(y))^2 dy \right\}
$$

$$
= \arg \min_{\theta} \left\{ \mathcal{L}_2E = \|p_t\|^2 - 2 \langle p_t|p_p \rangle \right\}
$$

(5)

While many divergences exist, the L_2 divergence (or L_2E) is chosen for its robustness and its ease of computation when using Gaussian mixtures (Scott, 2001; Jian and Vemuri, 2011; Ma et al., 2015).

In Equation 5 the term $\|p\|^2$ is related to the quadratic Renyi entropy of p noted $\mathcal{R}(p)$ (for both target and palette distributions):

$$
\|p\|^2 = \exp(-\mathcal{R}(p))
$$

while the scalar product term $\langle p_t|p_p \rangle$ is related similarly to the Renyi cross entropy between p_t and p_p (Escolano et al., 2009). The entropy of the palette $\|p_p\|^2$ is not needed for solving this estimation: we therefore use \mathcal{L}_2E as our cost function, maximizing the entropy of the target model $\mathcal{R}(p_t)$, and maximising the overlap between the target and palette pdfs. This framework was first investigated in (Grogan et al., 2015; Grogan and Dahyot, 2015), and it is extended further here to take advantage of correspondences that may be available between pixels of the target image to be recoloured, and the pixels of the palette image used as an exemplar (see Sec. 3.2.2).

Comparing OT and \mathcal{L}_2E. Interestingly, recent advances in OT also include an entropy based regularisation term extending Eq. 4 (Bonneel et al., 2016; Courty et al., 2017) such that:

$$
\hat{\pi} = \arg \min_{\pi} \{ c(\pi) + \lambda \mathcal{H}(\pi) \}
$$

(7)

Parameter λ weights the contribution of the negentropy \mathcal{H} in the regularization (Bonneel et al., 2016). The regularized OT cost (Eq. 7) has a similar form to our \mathcal{L}_2E cost function (Eq. 5) where $\|p_t\|^2$ acts as the Renyi entropy based regularization (albeit not adjusted with a tuning parameter λ) added to the cross product $\langle p_t|p_p \rangle$ (mimicking the term $-\langle c|\pi \rangle$). Our \mathcal{L}_2E formulation considers the modelling of a single random variable (or vector) y for which two pdfs are defined (p_t and p_p), hence integration $\langle \cdot \rangle$ is w.r.t. y. In contrast, integration in the OT formulation is w.r.t. two variables x and y whose interaction is modelled with the joint density function $\pi(x,y)$.

3.1. Parametric pdf p_t and pdf p_p

The parametric pdf p_t representing the distribution of colours in the target image is modelled as a Gaussian Mixture model with parameterized means $\{\phi_0(\mu^{(k)}_t)\}_{k=1..K}$, where $\{\mu^{(k)}_t\}_{k=1..K}$ are selected by applying the K-means algorithm to the colours in the target image. The K-means algorithm is equivalent to using an EM algorithm enforcing identical isotropic covariance matrices (Wu et al., 2007). The faster Minimum Variance Quantisation (MVQ) algorithm can be used in practice (see Section 4). Similarly, the pdf p_p representing the distribution of colours in the palette image is modelled as a Gaussian Mixture model with means $\{\mu^{(k)}_p\}_{k=1..K}$, again where $\{\mu^{(k)}_p\}_{k=1..K}$ are selected by the K-means algorithm. Both target and palette Gaussian Mixture models use isotropic identical covariance matrices controlled by a bandwidth h:

$$
\Sigma = h^2I
$$

(8)
<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>Correspondences</th>
<th>No Correspondences</th>
<th>Open source</th>
<th>Image</th>
<th>Video</th>
<th>Test $P = T$ (Sec. 4.1)</th>
<th>Test $P \neq T$ (Sec. 4.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bonneel</td>
<td>Bonneel et al. (2015)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMLS</td>
<td>Hwang et al. (2014)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ferradans</td>
<td>Ferradans et al. (2013)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pitié</td>
<td>Pitié et al. (2007)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Park</td>
<td>Park et al. (2016)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Xia</td>
<td>Xia et al. (2017)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1. Road-map for experiments. Our framework is able to take advantage of correspondences (Corr) between Target (T) and Palette (P) images when available, and without correspondences (No Corr). While correspondences are easily available when palette and target images capture the same visual content ($P = T$), they are not available when using images of different content ($P \neq T$).

with the identity matrix I.

The transfer function $\phi : x \in \mathbb{R}^d \rightarrow \phi_\theta(x) \in \mathbb{R}^d$ can be conveniently defined as a rigid, affine or Thin Plate Splines parametric function (Escolano et al., 2009; Jian and Vemuri, 2011) which can be written as:

$$\phi_\theta(x) = A x + o + \sum_{j=1}^{m} w_j \psi(||x - c_j||) = A x + o + W \Psi(x) \quad (9)$$

Discarding the non linear part of ϕ provides an affine warping function which can be further limited to a rigid transformation by choosing A as a rotation matrix. While earlier colour transfer approaches estimated affine transfer functions (Reinhard et al., 2001; Pitié and Kokaram, 2007), they are limited in the type of results that they can achieve (Hwang et al., 2014). Recent methods have therefore considered more complex transformations (Hwang et al., 2014; Bonneel et al., 2013).

Similarly, we decided to use the non-linear TPS transformation for our colour transfer function. For the TPS transformation, the latent parameter of interest, θ, corresponds to the set of coefficients $\{ w_j \in \mathbb{R}^d \}$, the $d \times d$ matrix A and the d-dimensional vector offset o. The non linear part can be rewritten in matrix form with a $d \times m$ matrix W gathering coefficients $\{ w_j \in \mathbb{R}^d \}$, and an m dimensional vector $\Psi(x)$ collating all values $\{ \psi(||x - c_j||) = -||x - c_j|| \}$. While many algorithms using TPS chose the set of control points $\{ c_j \}_{j=1 \ldots m}$ as a subset of the observations $\{ x^{(i)} \}$ (Chui and Rangarajan, 2003; Myronenko and Song, 2010), we choose the m control points $\{ c_j \}_{j=1 \ldots m}$ on a regular grid spanning the 3D colour space such that the 3D grid has $m = 5 \times 5 \times 5 = 125$ control points in the colour space. The dimension of our latent space to explore for the estimation of θ is:

$$\dim(\theta) = 125 \times 3 + 9 + 3 = 387$$

with $\dim(c_j) = 3$, $\forall j$, $\dim(A) = 3 \times 3 = 9$ and $\dim(o) = 3$ (cf. Eq. 9). Our choice of control points allows us to combine and easily create new warping functions using interpolation between parameter estimates (see Sec. 3.4).
3.2. Computing L_2E

In L_2E, the term $\|p_t\|^2$ can be computed as follows:

$$\|p_t\|^2 = \sum_{i=1}^{K} \sum_{k=1}^{K} N(0; \phi_0(\mu_t^{(i)}), \phi_0(\mu_i^{(i)}), 2h^2 I) \pi_t^{(i)} \pi_i^{(i)}$$

(10)

where $N(0; \phi_0(\mu_t^{(i)}), \phi_0(\mu_i^{(i)}), 2h^2 I)$ is the Normal distribution computed at 0 with mean $\phi_0(\mu_t^{(i)}) - \phi_0(\mu_i^{(i)})$ with covariance $2h^2 I$.

The weights $\{\pi_t^{(i)}\}_{i=1,\ldots,K}$ are chosen equiprobable with $\pi_t^{(i)} = \frac{1}{K}$.

3.2.1. Computing $\langle p_t | p_p \rangle$ without correspondences

The cross product can likewise be computed as:

$$\langle p_t | p_p \rangle = \sum_{i=1}^{K} \sum_{k=1}^{K} N(0; \phi_0(\mu_t^{(i)}), \phi_0(\mu_i^{(i)}), 2h^2 I) \pi_t^{(i)} \pi_i^{(i)}$$

(11)

with the weights $\{\pi_i^{(i)}\}_{i=1,\ldots,K}$ chosen equiprobable $\pi_i^{(i)} = \frac{1}{K}$ likewise as for p_t.

3.2.2. Computing $\langle p_t | p_p \rangle$ using correspondences

Pixel pairs between target and palette images, denoted $\{x_t^{(k)}, x_p^{(k)}\}_{k=1,\ldots,n}$, can be computed when considering target and palette images capturing the same scene. Colour transfer techniques are indeed often used in this context to harmonise colours across a video sequence and/or across multiple view images such as in the bullet time visual effect. In this case, the means of the Gaussian mixtures are set such that $\{(\mu_t^{(k)}, \mu_p^{(k)}) = (x_t^{(k)}, x_p^{(k)})\}_{k=1,\ldots,n}$ imposing $K_t = K_p = n$ when defining the distributions p_t and p_p. Moreover, the scalar product $\langle p_t | p_p \rangle$ in our cost function is then simplified as follows:

$$\langle p_t | p_p \rangle = \sum_{k=1}^{n} N(0; \phi_0(\mu_t^{(k)}), \phi_0(\mu_p^{(k)}), 2h^2 I) \pi_t^{(k)} \pi_p^{(k)}$$

(12)

The computational complexity of this term is then $n = K_t = K_p$ when using n correspondences, and $K_t \times K_p$ without correspondences. Performance of our approach with correspondences is assessed in Section 4 using palette and target images with similar content. Pixel correspondences are not used when considering palette and target images with different content and MVQ is used instead to define the K centroids for each target and model pdfs.

3.3. Regularisation of L_2E and estimation of θ

Regularisation terms, priors on θ or ϕ_0, can also be added to L_2E to constrain the estimation of θ (Jian and Vemuri, 2011; Arellano and Dabyt, 2012). To enforce that a smooth solution ϕ is estimated, the L_2E divergence is minimised with a roughness penalty on the transfer function ϕ (Escolano et al., 2009) and the estimation is performed as:

$$\hat{\theta} = \arg \min_{\theta} \left\{ C(\theta) = \|p_t\|^2 - 2\langle p_t | p_p \rangle + \lambda \int ||D^2 \phi(x, \theta)||^2 dx \right\}$$

(13)

with $||D^2 \phi(x, \theta)||^2 = \sum_{i,j=1,\ldots,d} \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right)^2$ with $d = 3$ for the colour spaces. Computation of $\hat{\theta}$ is performed by standard gradient descent algorithm with simulated annealing where the bandwidth h is used as a temperature (Grogan and Dabyt, 2017).

3.4. Parallel Computing of Recolouring step

One of the main advantages of this method is the fact that our transformation is controlled by a parameter θ and any pixel x can be recoloured by computing the new colour value $\phi_\theta(x)$. This computation can be done in parallel by distributing the pixels to be recoloured to the multiple processors that are available. Moreover, with one target image and N palette images of choice, the transformations $\{\hat{\theta}_1, \ldots, \hat{\theta}_N\}$ can also be estimated in parallel, and any interpolated new value $\hat{\theta}$ can be used for recolouring:

$$\theta_{new} = \sum_{j=1}^{N} \gamma_j \hat{\theta}_j, \quad \text{with} \quad \sum_{j=1}^{N} \gamma_j = 1, \quad \text{and} \quad \gamma_j \geq 0 \forall j$$

(14)

Interpolating in the θ space to create a new warping function is made easy thanks to the fact that we chose control points on a regular grid and not as sub samples of palette images. Of particular interest is the creation of smooth temporal transitions between the identity warping function and a colouring warping function for instance.

Once estimated, the parametric transformation can be easily applied to video content (Grogan and Dabyt, 2015; Frigo et al., 2015b). Interpolating between two parametric transformations $\hat{\theta}_1$ and $\hat{\theta}_2$ can also be used to create interesting effects in images.
The interpolating weight can also vary over time $\gamma(t) \in [0; 1]$ to create dissolve effects between colour palettes in videos. In this case, for each colour pixel x at pixel spatial location $p = (p_1, p_2)$ in the sequence at time t, the recolouring is computed as (Grogon and Dahyot, 2015):

$$x(p, t) \rightarrow \phi \left(x, \gamma(t) \hat{\theta}_1 + (1 - \gamma(t)) \hat{\theta}_2 \right)$$ \hspace{1cm} (15)

We extend this idea further using interpolation weights that vary spatially as well as in the temporal domain where pixels are recoloured as follows:

$$x(p, t) \rightarrow \phi \left(x, \gamma(p, t) \hat{\theta}_1 + (1 - \gamma(p, t)) \hat{\theta}_2 \right)$$ \hspace{1cm} (16)

$\gamma(p, t)$ is a dynamic grey scale mask with values between 0 and 1.

Figure 2 presents some examples of results on images1. In this figure, pixels in the target image whose corresponding pixel in the grey scale mask is black have been recoloured using palette 1, and those whose corresponding pixel is white have been recoloured using palette 2. The remaining pixels have been recoloured using an interpolation between the two transformations, $\hat{\theta}_1$ and $\hat{\theta}_2$. For each pixel this interpolation is determined by the value of its corresponding pixel in the grey scale mask. Figure 2 highlights the different effects that can be easily created using the same palettes as input, but by changing the mask used for interpolation. The mask in Figure 2 (a) is an alpha matte that segments background from foreground. In (b), the mask was generated by first fitting a 3D morphable model to the face in the image (Bas et al., 2016; Ramanan, 2012), and as the direction of the normal vectors of the 3D face change, the colours in the mask change from white to black. The background of this mask also has a fade effect from left to right. The mask in (c) was generated by first converting the target image to grey scale and then editing the brightness and contrast of this image.

These effects can be extended to mixing more than 2 transformations (or palettes). A simpler interpolation between the identity transformation $\hat{\theta}^{(id)}$ and an estimated transformation $\hat{\theta}$ with a selected colour palette can also be created:

$$x(p, t) \rightarrow \phi \left(x, \gamma(t) \hat{\theta}^{(id)} + (1 - \gamma(t)) \hat{\theta} \right)$$ \hspace{1cm} (17)

This gives the user the flexibility to transition smoothly from one colour mood to another.

Having a quick recolouring step is essential to give the user instant feedback about the new effects being applied to the image or video. Our transformation can be applied to each pixel independently and it is therefore highly parallelisable. A CPU

1Supplementary results for videos are provided by the authors.
or GPU parallel implementation would ensure that the target image is recoloured almost instantly. For our implementation we parallelised the recolouring step on the CPU using OpenMP, and performance is assessed in Section 4.4.

4. Experimental results

Table 1 summarizes some state of the art techniques compared to our method in different scenarios. In this section we present further qualitative and quantitative comparisons between our technique and these methods. To quantitatively assess recolouring results, three metrics - peak signal to noise ratio (PSNR), structural similarity index (SSIM) and colour image difference (CID) - are often used when considering palette and target images of the same content for which correspondences are easily available (Lissner et al., 2013; Oliveira et al., 2015; Hwang et al., 2014; Bellavia and Colombo, 2018). Alternatively user studies have also been used to assess the perceptual visual quality of the recolouring (Hristova et al., 2015). We evaluate our proposed algorithms and show that they are comparable to current state of the art colour transfer algorithms in terms of the perceptual quality of the results (paragraphs 4.1, 4.2 and 4.3), and superior in terms of computational speed (paragraph 4.4). We use colour values represented in the RGB space, but further comparison between LAB and RGB colour spaces can be found in Grogan and Dahyot (2017). We use TPS_{rgb}^{KM} to notate the version of our colour transfer algorithm that uses K-Means to estimate the Gaussian Mixture model means (Sec. 3.2.1), and TPS_{rgb}^{Corr} to notate the version that takes into account pixel correspondences instead (Sec. 3.2.2). The code we used to implement our method has also been made available online.

4.1. Images with similar content $P \approx T$

One important application of colour transfer is in harmonising the colour palette of several images or videos capturing the same scene. To evaluate our algorithm applied to images with similar content, we use the 15 images in the dataset provided by Hwang et al. (2014) which includes images with many different types of colour changes including different illuminations, different camera settings and different colour touch up styles. This dataset provides palette images which have been aligned to match the target image. To define correspondences, pixels at the same location in the target and aligned palette images are selected together to form a pair. Note that results using PMLS were provided by the authors (Hwang et al., 2014).

Table 2 provides a quantitative evaluation of our proposed methods in comparison to leading state of the art colour transfer methods, and Figure 3 presents results for visual comparison (c.f. notations explained in Table 1). Here, we compare algorithms that account for correspondences (in green) and those that do not (in blue). We found that due to the simpler parametric transformations estimated, both Xia and Park fail to correct more non-linear colour differences between images (see Columns 4 and 5 of Fig 3), which is also reflected in their low quantitative scores in Table 2. Optimal transport techniques such as those proposed by Pitié, Bonneel and Ferradans, do not account for colour correspondences between images. When the content of the target and palette images are practically identical, OT methods perform reasonably well as they try to match the colour distributions of the target and palette images exactly, but similar to our K-means approach TPS_{rgb}^{KM}, they cannot compete with correspondence based techniques such as PMLS or our TPS_{rgb}^{Corr} approach, which perform significantly better in terms of all three metrics (Table 2).

While PMLS performs best in terms of the PSNR, SSIM and CID metrics, the accuracy of these metrics relies on the fact that the input images are registered correctly. If this is not the case, as in Figure 4, these metrics may not accurately capture all artifacts. In fact, on visual inspection, it is evident that the PMLS technique introduces visual artifacts when registration errors are present, as can be seen in Figure 4. Their pixel by pixel

\footnote{https://sites.google.com/site/unimonopmls}

\footnote{Results for Bonneel were generated using their code and exclude a gradient smoothing postprocessing step.}
pixel least squares recolouring approach causes neighbouring pixels to differ a lot after recolouring when outliers are present. While PMLS is not robust to registration errors, our algorithm indeed is thanks to the robust L_2 distance. Our approach allows us to maintain the structure of the original image and to create a smooth colour transfer result (cf. Figure 4 for comparison). So to summarise, while PMLS and our TPSCorr$_{rgb}$ algorithm provide similar quantitative performances as measured by PSNR, SSIM and CID, TPSCorr$_{rgb}$ in fact provides better qualitative visual results. (Additional qualitative and quantitative results on all 15 images can be found in the supplementary material.)

<table>
<thead>
<tr>
<th></th>
<th>μ_{PSNR}</th>
<th>$S_{E_{PSNR}}$</th>
<th>μ_{SSIM}</th>
<th>$S_{E_{SSIM}}$</th>
<th>μ_{CID}</th>
<th>$S_{E_{CID}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferradans</td>
<td>22.13</td>
<td>0.8</td>
<td>0.877</td>
<td>0.02</td>
<td>0.369</td>
<td>0.02</td>
</tr>
<tr>
<td>Bonnel</td>
<td>20.07</td>
<td>1.1</td>
<td>0.838</td>
<td>0.03</td>
<td>0.377</td>
<td>0.02</td>
</tr>
<tr>
<td>Pitié</td>
<td>25.85</td>
<td>0.9</td>
<td>0.899</td>
<td>0.02</td>
<td>0.330</td>
<td>0.02</td>
</tr>
<tr>
<td>TPS$^{KM}_{rgb}$</td>
<td>24.20</td>
<td>0.8</td>
<td>0.908</td>
<td>0.02</td>
<td>0.325</td>
<td>0.02</td>
</tr>
<tr>
<td>Park</td>
<td>23.71</td>
<td>0.7</td>
<td>0.900</td>
<td>0.02</td>
<td>0.367</td>
<td>0.02</td>
</tr>
<tr>
<td>Xia</td>
<td>21.85</td>
<td>1.1</td>
<td>0.869</td>
<td>0.02</td>
<td>0.474</td>
<td>0.05</td>
</tr>
<tr>
<td>PMLS</td>
<td>30.82</td>
<td>1.5</td>
<td>0.946</td>
<td>0.02</td>
<td>0.154</td>
<td>0.02</td>
</tr>
<tr>
<td>TPSCorr$_{rgb}$</td>
<td>30.30</td>
<td>1.5</td>
<td>0.944</td>
<td>0.02</td>
<td>0.172</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2. Comparison of our algorithms TPSCorr$_{rgb}$ and TPS$^{KM}_{rgb}$ against state of the art techniques. Mean and standard error results for the SSIM, PSNR and CID metrics computed for recoloured images with similar content: Highest PSNR and SSIM values indicate the best results, while lowest CID values indicate the best results. The best techniques are highlighted in red.

4.2. Images with different content $P \neq T$

We compare our algorithm with other optimal transport based colour transfer techniques (Bonneel et al., 2015; Ferradans et al., 2013; Pitié et al., 2007) applied to images of different content and without correspondences. In the case of Ferradans et al. (2013), all images were generated using the parameters $\lambda_x = \lambda_y = 10^{-3}$ and $\kappa = (0.1, 0.1, 0.1, 1)$. Figure 5 shows that Bonneel and Ferradans methods can create blocky artifacts in the result image gradient (Row 2, 6, 7). On the other hand, the gradient smoothing step added to Pitié’s algorithm ensures that these errors do not appear in their results, creating images that are more visually pleasing. However, matching the exact colour distributions of the images can still create unwanted colour changes in Pitié’s results when the distributions are very different (Rows 9-11). Ferradans technique, which relaxes the OT constraint forcing the colour distributions to match exactly after recolouring, suffers less from these unexpected colour changes (row 7, 10), although the colours in their results can be less similar to those in the palette image (Column 4, row 8, 10, 11). The colours appearing in Bonneel’s results can also differ from those in the palette (Row 10-11) as this method only alters the chrominance values of the target image, leaving the luminance values unchanged. On the other hand, our algorithm produces results that match the colours in the palette image well, and the thin plate spline transformation ensures that the image gradient remains smooth, even when the colour distributions of the target and palette images are very different (Rows 10-11).

4.3. Qualitative assessment

Colour transfer methods have also been evaluated using two subjective user studies, each with 20 participants evaluating 53 sets of images. In each experiment the participants were asked to choose the colour transfer result that they thought was the most successful. Out of these 53 sets of images, 38 of them had a palette and target image with different content (no correspondences available), and 15 of them contained a palette and target image with the same content (correspondences available and used). These 15 images were taken from the dataset provided by Hwang et al. (2014) (cf. paragraph 4.1). For both user studies, each participant evaluated the results individually. The display properties and indoor conditions were kept constant for all participants. The order in which the image sets appeared was randomised for each participant and a short trial run took place before each user study to ensure the users adapted to the task at hand.

4.3.1. User Study I

In our first experiment, each participant was presented with six images at a time - a target image, a palette image, and four result images generated using different colour transfer tech-
niques. They then had 20 seconds to view the images (presented simultaneously side by side) and decide which result image was the best.

For target and palette images with similar content the four methods compared were TPS_{rgb}^{Corr}, PMLS, Pitić and Bonneel (For ease of comparison, we chose only four methods, including TPS_{rgb}^{Corr}, PMLS and Pitić, the three top methods according to the quantitative results (see Tab. 2). The total number of times each method was chosen can be seen in Table 3. Converting these totals to proportions, we used the z-test to compute the confidence interval on each proportion and compared methods by determining if their confidence intervals overlap. We found that TPS_{rgb}^{Corr} was the best method in terms of votes however the overlapping confidence intervals indicate that TPS_{rgb}^{Corr} and PMLS are not statistically significantly different. Hence these two methods, PMLS and ours, can be thought of as performing equally well and both being superior to Pitić and Bonneel methods.

Similarly for images with different content we compared TPS_{rgb}^{KM}, Ferradans, Pitić and Bonneel. The total number of times each method was chosen can be seen in Table 3. Again, by comparing the confidence interval on the proportions we determined that TPS_{rgb}^{KM} performs better than both Ferradans and Bonneel, however there is no statistically significant difference between TPS_{rgb}^{KM} and Pitić.

4.3.2. User Study II

For our second experiment we used a 2 alternate forced choice comparison. In this case each participant was presented with two images at a time - a target image, a palette image, and two result images generated using different colour transfer techniques. They then had 15 seconds to view the images and decide which result image was the best. For target and palette images with similar content we compared the two methods that performed best in the previous user study - TPS_{rgb}^{Corr} and PMLS, and the total number of times each method was chosen can be seen in Table 4. Again we converted these totals to proportions and computed the confidence interval on each, and determined that there was no significant difference between the two. We then used the Thurstone Case V analysis to compute preference scores and confidences intervals for each method, as seen in Table 4, and in this case found that the confidence intervals do not overlap, indicating a significant difference between the two methods.

Similarly for images with different content we compared the two techniques that performed best in the previous user study, TPS_{rgb}^{KM} and Pitić, the results of which can be seen in Table 4. In this case both methods were chosen an equal number of times, indicating again that there is no perceivable difference between the results of TPS_{rgb}^{KM} and Pitić.

<table>
<thead>
<tr>
<th>Method</th>
<th>Votes</th>
<th>Prop</th>
<th>CI on Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonneel</td>
<td>38</td>
<td>0.127</td>
<td>(0.089, 0.164)</td>
</tr>
<tr>
<td>Pitić</td>
<td>63</td>
<td>0.210</td>
<td>(0.164, 0.256)</td>
</tr>
<tr>
<td>PMLS</td>
<td>98</td>
<td>0.327</td>
<td>(0.274, 0.380)</td>
</tr>
<tr>
<td>TPS_{rgb}^{Corr}</td>
<td>101</td>
<td>0.337</td>
<td>(0.283, 0.390)</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Votes</th>
<th>Prop</th>
<th>CI on Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonneel</td>
<td>163</td>
<td>0.215</td>
<td>(0.185, 0.244)</td>
</tr>
<tr>
<td>Pitić</td>
<td>211</td>
<td>0.278</td>
<td>(0.246, 0.310)</td>
</tr>
<tr>
<td>Ferradans</td>
<td>152</td>
<td>0.20</td>
<td>(0.172, 0.228)</td>
</tr>
<tr>
<td>TPS_{rgb}^{KM}</td>
<td>234</td>
<td>0.308</td>
<td>(0.275, 0.341)</td>
</tr>
<tr>
<td>Total</td>
<td>760</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Number of votes given to each method by participants in our first perceptual study, their corresponding proportion and confidence interval. According to votes, the best method is indicated in red, second best in green, third best in blue.

4.4. Computation Time

Our algorithm is split into three parts: the clustering step, the estimation step of θ and the recolouring step $x \rightarrow \phi(x, \theta)$. As K-means can be quite time consuming, we investigated some fast quantisation methods including those provided by Matlab and the GNU Image Manipulation Program (GIMP). We found that
Table 4. Number of votes given to each method by participants in our second perceptual study, corresponding proportion and confidence interval, Thurstone score and associated confidence interval.

using Matlab’s minimum variance quantisation method (MVQ) provided almost identical results to K-means as well as being much faster and is used as an alternative to K-means to speed up the clustering step (Table 5).

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Estimating $\hat{\theta}$</th>
<th>Recolouring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVQ</td>
<td>0.005s</td>
<td>K = 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPS 1.04s</td>
</tr>
</tbody>
</table>

Table 5. Computation times in seconds for each step of our algorithm for a HD (1080 x 1920) image with over 2 million pixels. For the clustering step, the images were first downsampled to 300 x 350 pixels to reduce computation time.

The recolouring step on the other hand is highly parallelisable and can be applied independently to each pixel. Our implementation uses OpenMP within a Matlab mex file to parallelise this step on 8 CPU threads. All times are computed on a 2.93GHz Intel CPU with 3GB of RAM with 4 cores and 8 logical processors. In comparison, the GPU implementation of PMLS takes 4.5 seconds to recolour a 1 million pixel image using an nVIDIA Quadro 4000 as reported in Hwang et al. (2014), which is 9 times slower than our implementation with TPS. Similarly, Bonneau et al. (2013) report a time of approximately 3 minutes to recolour 108 frames of a HD segmented video on an 8 core machine with their algorithm. In comparison, our algorithm would take less than 2 minutes using TPS in the same situation.

5. L_2 vs OT for colour transfer

In this paper we have shown that for colour transfer applications, one of the main advantages of using the proposed L2 framework over OT techniques is its flexibility and its ability to use correspondences. Indeed OT cannot take correspondences into account when computing its solution whereas our L2 framework allows seamlessly to take advantage of such correspondences when these are available. Such correspondences occur naturally in practice in a wide range of applications (e.g. photo stitching, video recolouring) when target and source images capture the same scene (i.e. images with similar content) and color transfer offer a natural solution for harmonizing their colors. We have also recently demonstrated that this L2 framework cater for user defined correspondences (i.e. for images of same or different content, or using a restricted colour palette) allowing user interaction during the recolouring process (Grogan et al., 2017).

When images have very different content, we have shown that by matching the true colour distributions of the target and palette images exactly, OT methods cause unexpected colour changes to appear. Our chosen GMM modelling framework prevents this from happening since, rather than capturing the true distribution of the transformed image, it approximates it. With equals weights and covariance matrices, our transformed GMM gives less emphasis to the spread of colours associated with each Gaussian component, and models only how the TPS transformation effects the colours captured by the Gaussian means. In this way, our L_2 framework matches the colour content of the images, rather than the true colour distribution, giving improved results even in comparison to other OT methods that also propose approximating the colour distributions (Ferradans et al., 2013). Note that other kernels than Gaussian have been successfully used with L_2 for shape registration (Grogan and Dahyot, 2018) and our solution for colour transfer with L_2 is in principle not limited to using GMMs. Finally, constrain-
ing GMMs at boundary values of the colour space (e.g. 0 and 255) can easily be enforced in the proposed L2 based framework (Grogan et al., 2017) preventing saturation to occur.

Frigo et al. (2015b) have suggested fitting a TPS function to the estimated OT solution as a post process, which would create a smoother transfer function for OT and also removes the OT generated blocky artifacts. This step however may require robust fitting of TPS to deal with discontinuous mapping in the OT solution. The strength of the TPS regularisation term that controls how close or far the TPS solution is from the original OT solution, would also need to be carefully chosen. In contrast, L2 is naturally robust and our GMM formulation tackles class imbalance for images of different content, both are contributing factors in our approach for fitting a good TPS warping function.

In terms of computation time (see Table 6), our TPSKM technique is slightly faster than Pitié when applied to a 1 million pixel image, while Bonneel and Ferradans are more computationally intensive. The time taken for our TPSCorr approach increases linearly as the number of correspondences increases, and so depends on the accuracy required by the user - more correspondences will create a more accurate color correction result, but will take longer to compute.

<table>
<thead>
<tr>
<th>Ferradans</th>
<th>Bonneel</th>
<th>Pitié</th>
<th>TPSKM</th>
<th>TPSCorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>98s</td>
<td>170s</td>
<td>12s</td>
<td>7s</td>
<td>16s</td>
</tr>
</tbody>
</table>

Table 6. Computation times for a 1 million pixel image using Matlab implementations on a 2.93GHz Intel CPU with 3GB of RAM with 4 cores and 8 logical processors. TPSCorr is applied with 10000 pixel correspondences.

6. Conclusion

We have presented a new framework for colour transfer that is able to take into account correspondences when these are available. Our algorithms compete very well with current state of the art approaches. We have shown that TPSCorr, our correspondence based approach, performs similarly in terms of the SSIM, PSNR and CID metrics when compared with the current top techniques, and visual inspection of our results shows that our algorithms are more immune to artifacts that can be created in the gradient field of the recoloured image by other methods (Hwang et al. (2014); Ferradans et al. (2013); Bonneel et al. (2015)). When correspondences are not available, our L2 formulation creates good results even when the colour distribution of the target and palette images are very different, unlike other state of the art OT techniques (Pitié et al. (2007); Bonneel et al. (2015)). Our TPS formulation of the transfer function also ensures that the gradient of the recoloured images stay smooth, removing the need to add an additional smoothing step typically required by OT techniques (Pitié et al. (2005); Bonneel et al. (2015); Papadakis et al. (2011)). Our parametric transfer function also allows for fast recolouring of images and videos. Moreover transfer functions can be stored and easily combined and interpolated for creating visual effects. This L2E framework has been extended further to let users enforce correspondences and interactively refine the recolouring (Grogan et al., 2017).

Acknowledgments

This publication has emanated from research supported by an Ussher Scholarship from Trinity College Dublin and by a research grant from Science Foundation Ireland (SFI) under the Grant Number 15/RP/2776.

References

cfn?id=2364409.2385119.

Fig. 3. Results on images with similar content on the ‘playground’, ‘mart’, ‘illum’, ‘tonal4’ and ‘gangnam1’ images. On close inspection grainy artifacts can be seen appearing in some PMLS results (Row 6) - for example, around the car in Column 3 or in the top right corner of the image in Column 2. In comparison, the results generated by TPS$_{rev}$ remain smooth (Row 7). For zoom see Fig. 4.
Fig. 4. A close up look at some of the errors generated using the PMLS algorithm (Hwang et al., 2014) in comparison to our smooth result with TPS_{corr}. The structure of the original target image (left) is altered after recolouring using PMLS but not TPS_{corr}.
Fig. 5. Comparison with state of the art techniques with images ($P \neq T$).