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ABSTRACT

Optimal Transport (OT) is a very popular framework for performing colour transfer in images and
videos. We have proposed an alternative framework where the cost function used for inferring a
parametric transfer function is defined as the robust £, divergence between two probability density
functions (Grogan et al., 2015). In this paper, we show that our approach combines many advantages
of state of the art techniques and outperforms many recent algorithms as measured quantitatively
with standard quality metrics, and qualitatively using perceptual studies (Grogan and Dahyot, 2017).
Mathematically, our formulation is presented in contrast to the OT cost function that shares similarities
with our cost function. Our formulation, however, is more flexible as it allows colour correspondences
that may be available to be taken into account and performs well despite potential occurrences of
correspondence outlier pairs. Our algorithm is shown to be fast, robust and it easily allows for user
interaction providing freedom for artists to fine tune the recoloured images and videos (Grogan et al.,

2017).

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Colour transfer refers to a set of techniques that aim to mod-
ify the colour feel of a target image or video using an exem-
plar colour palette provided by another image or video. Most
techniques are based on the idea of warping some colour statis-
tics from the target image colour distribution to match those of
the palette image colour distribution. The transfer (or warping)
function ¢, once estimated, is then used to recolour a colour
pixel value x to ¢(x).

Many factors can be considered when assessing a colour
transfer technique, with the most important ones summarised
in Figure 1. The first consideration is the type of data processed
by the system. While most applications process images, they

can require considerable effort to ensure that the colour transfer
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Fig. 1. Factors to consider when assessing a colour transfer technique.

function can be applied to video data without creating tempo-
ral artifacts (Bonneel et al., 2013). Many techniques also ei-
ther consider target and palette images with overlapping content
(Xia et al., 2017; Park et al., 2016; Oliveira et al., 2015; Hwang
et al., 2014; HaCohen et al., 2011), or those with completely



different content (Piti€ et al., 2007; Bonneel et al., 2015). For
the former, pixel correspondences can be used to enhance the
colour transfer estimation, while purely statistical properties of
the images are considered in the latter case. The quality of the
colour transfer results generated is also an important factor, and
can be assessed by considering whether the application success-
fully transfers the colour feel from the palette to the target im-
age, whether the results are good even in the case of bad pixel
correspondences (if used), and whether the results generated
are repeatable and consistently successful. As many techniques
aim to work in real time, speed is also an important aspect.
With the increased use of parallel architectures, the ability to
parallelise some or all of the computation is also advantageous.
The final factor to consider is the type of user interface that will
be provided. Methods typically fall into one of two categories
- automatic methods and those that allow for user interaction.
While automatic methods generate result images easily, they
greatly reduce the artistic freedom of the user. This is the main
drawback of automatic methods, including many of those based
on neural networks, which have become popular in recent years

(He et al., 2017; Luan et al., 2017; Liao et al., 2017).

In this paper we explore a colour transfer technique that tries
to satisfy all of the requirements shown in Figure 1. Our colour
transfer approach can be applied to target and palette images
both with and without pixel correspondences, and can be eas-
ily applied to video content (Grogan and Dahyot (2015)). Re-
colouring using our parametric transfer function is highly paral-
lelisable, and once estimated the transfer function can be easily
stored and reused. Our £, E based cost function is robust to cor-
respondence outliers and our colour transfer results outperform
other state of the art techniques. Finally, this paper presents
colour transfer results automatically generated given a target
and palette image, with many and without any pixel correspon-
dences between the two input images. We have also recently
shown that our colour transfer algorithm can be efficiently tuned
further by a user (or artist), specifying a small number of corre-

spondences to minimize interaction (Grogan et al., 2017).

In the next section, we present relevant past work in the area

2

of colour transfer and many of these past ideas are integrated as
part of our robust modelling with the £, E divergence (Section
3). Performance of our approach is then compared qualitatively

and quantitatively with state of the art techniques in Section 4.

2. State of the art

The body of work in recolouring is very large and the reader
is referred to this recent exhaustive review by Faridul et al.
(2014). Early work on colour transfer started with registering
statistical moments of colour distributions (Section 2.1) using
a parametric affine formulation of the transfer function ¢. This
methodology soon shifted to using the Optimal Transport (OT)
framework (Section 2.2). OT techniques use non-parametric es-
timates of colour distributions, and the resulting algorithms for
colour corrections do not provide an explicit expression of ¢ but
instead an estimated correspondence (x, ¢(x)) for every colour
pixel x. This can be memory consuming when capturing ¢ on a
2563 discrete RGB colour space for instance. Alternative meth-
ods (Section 2.3) instead propose to capture colour distributions
with Gaussian Mixture models and use some correspondences
(Section 2.4) between Gaussian components of the palette and

target distributions.

2.1. Registration of colour statistical moments

The pioneering work of Reinhard et al. (2001) proposed to

use a warping function ¢ with parametric form:
o(x,0 ={G,0})) =Gx+o0 (D

with the vector o representing an offset and the 3 x 3 diagonal
matrix G representing the gains for each colour channel. The
estimation of the parameter 6 is performed by registering the
probability density functions of the colours in the palette and
target images, denoted p, and p;, represented as simple mul-
N (x5 i, 24))

with diagonal covariance matrices X, and X;. Since Normal

tivariate Gaussians (p, = N(x;u,,%,) and p,

distributions are fully described by their first two statistical mo-
ments, means and covariance matrices, the optimal mapping ¢

is specified by the solution 6 that maps the empirical estimates



of (u;, ;) computed using the pixel values {xfi) }i=1,... n, 1n the tar-

get image, to the empirical estimates of (u,,%,) computed us-
ing the pixel values {)cg)},-= 1, in the palette image. Piti€ and
Kokaram (2007) proposed an OT solution to this affine trans-
fer function modelling p, and p; as simple multivariate Gaus-
sians likewise. However these two methods use affine transfor-
mations which are limited in the type of results that they can

achieve, therefore recent methods have considered more com-

plex transformations.

2.2. Optimal Transport

Monge’s formulation (Villani, 2009) sets the deterministic
decoupling y = ¢(x) linking two random variables y ~ p,(y)

and x ~ p,(x) imposing the solution ¢ that verifies:

Pp(x) = pi(¢(x)) X | det Vo (x)| 2

In practice, finding ¢ such that Equation (2) is true is difficult
when considering multidimensional space (Villani, 2003). A
solution when x € R and y € R can however be defined with
the cumulative distribution of colours in the target and palette

images P; and P,,:
¢(x) = P70 Pp(x) 3)

when P, is strictly increasing (i.e. p,(y) > 0,¥y € R). P, and P,
can be approximated with cumulative histograms for instance.
Such a process for finding the warping function ¢ is powerful
since no strong hypotheses are made about the distributions (as
opposed to the Gaussian assumption in Section 2.1). Moreover,
no parametric form is imposed on the warping function ¢.

A solution to Eq. (2) becomes non trivial in multidimen-
sional colour spaces. Of particular interest is the pioneering
work of Pitié et al. (2005) who proposed an iterative algorithm
that first projects the colour pixels {x¥'} on a 1D Euclidean
space, and then estimates ¢ using Eq. (3) and applies it to move
all values {x*} along the direction of the 1D space. This op-
eration is repeated with different directions in 1D space until
convergence. The intuitive explanation for this approach comes
from the Radon Transform (Pitié et al., 2007): if Equation (3)

is verified in all 1D projective spaces, then Equation (2) will
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be verified in the multidimensional space. However, this ap-
proach alters the colours of the target image so they match the
colour distribution of the palette image exactly, which is not
ideal when the colour distributions of the images are very dif-
ferent, and causes grainy artifacts to appear in the gradient of
the result image. The subsequent extension by Pitié et al. (2007)
proposed a post processing step to correct this artifact and en-
sure that the gradient field of the recoloured target image is as
close as possible to the original target image. Similar to (Pitié
et al., 2007), Bonneel et al. (2015) recently proposed to use a
Radon Transform inspired strategy for colour transfer in their
OT method. Their approach is a generalisation of the method
proposed by Pitié et al. which uses 1-D Wasserstein distances
to compute the barycentre of a number of input measures. The

OT problem is formulated with a cost function c:

= ir;f ffc(x, y) 7(x,y) dx dy 4

where the marginals of the joint density function 7 are p, and
pp- Bonneel et al. (2015) used the £,-Wasserstein distance with
the Euclidean distance c(x,y) = |lx — y|[>: note that this £,
Wasserstein distance between random vectors x and y is differ-
ent to that used in our framework, where our £, refers to the
Euclidean distance between marginals p; and p, (see Section
3). When this method is used for colour transfer between target
and palette images, it matches only the chrominance channels
of the target and palette images, leaving the target image’s lumi-
nance channel unchanged after recolouring. As well as colour
transfer, this OT approach can also be used to find the barycen-
tre of three or more weighted image palettes.

Histograms are often employed to approximate the colour
distributions of images (Neumann and Neumann, 2005; Pa-
padakis et al., 2011; Pouli and Reinhard, 2011) and used in OT
methods (Freedman and Kisilev, 2010; Ferradans et al., 2013;
Pouli and Reinhard, 2011). Similar to the method proposed by
Pitié et al. (2005), these discrete methods have a tendency to
introduce grainy artifacts in the gradient of the result image,
and like Pitié et al. (2007), recent methods have also proposed
adding a step to impose that the resulting spatial gradient of the

recoloured image remains similar to the target image (Xiao and



Ma, 2009; Papadakis et al., 2011; Ferradans et al., 2013). Al-
ternatively, other methods have proposed to relax the constraint
that enforces the distributions of the recolored target image and
palette image to match exactly (Freedman and Kisilev, 2010;
Pouli and Reinhard, 2011; Ferradans et al., 2013). Bonneel
et al. (2015) propose using a gradient smoothing technique to
reduce any quantisation errors that appear in their results (Rabin
etal., 2011). Frigo et al. (2015b) propose to remove artifacts by
first estimating an OT solution and using it to compute a smooth
Thin Plate Spline (TPS) transformation to ensure that a smooth
parametric warping function is used for recolouring, allowing

them to apply their method to video content easily.

2.3. Using Gaussian Mixture models

Gaussian Mixture models are often used to model the colour
distribution of images in colour transfer applications. Jeong
and Jaynes (2007) use colour transfer techniques to harmonise
the colour distributions of non overlapping images of the same
object for tracking purposes in a multiple camera setting. The
colour chrominance (2D) distribution is modelled using Gaus-
sian Mixture models, and the transfer function is parametric
with an affine form estimated by minimising the Kullbach-
Leibler divergence between Gaussian components using a ro-
bust procedure to tackle outlier pairs. Xiang et al. (2009) model
the colour distribution of the target image with a Gaussian mix-
ture estimated by an EM algorithm. Each Gaussian component
in the mixture defines a local region in the target image, and
each segmented local region is recoloured independently us-
ing multiple palette images, likewise segmented in regions us-
ing Gaussian Mixture model fitting of their colour distributions.
Colour transfer is performed by associating the best Gaussian
component from the palettes to the Gaussian target region us-
ing the Gaussian affine transfer function proposed by Reinhard
et al. (2001). Segmentation using alternative approaches such
as meanshift (Comaniciu and Meer, 2002) and K-means (Xu
et al., 2005) is also tested to define the colour Gaussian mix-
tures. This approach relies on homogeneous colour regions
each captured with one multivariate normal in the 3D colour

space. Localised colour transfer using Gaussian Mixture mod-
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els between overlapping colour images have also been proposed
for colour corrections, motion deblurring, denoising, gray scale

coloring (Tai et al., 2005).

2.4. Using correspondences

Other methods propose taking pixel correspondences into ac-
count when finding the colour transformation (Oliveira et al.,
2015; HaCohen et al., 2013; Hwang et al., 2014; Park et al.,
2016; Vazquez-Corral and Bertalmio, 2014). Oliveira et al.
(2015) proposed to find the mapping of 1-dimensional truncated
Gaussian Mixture model representations computed for each
colour channel of the target and palette images. For color cor-
rection of images capturing a scene taken under the same illu-
mination, Vazquez-Corral and Bertalmio (2014) use color cor-
respondences to compute a tonal transformation function con-
sisting of both a linear 3x3 matrix and gamma correction power
terms. They show it performs well when images have been cap-
tured using different cameras, different camera settings, and dif-
ferent white balance and exposure. Frigo et al. (2015a) tackle
the problem of tonal fluctuation in video by combining a 6 pa-
rameter colour warping function ¢, similar to that proposed
by Vazquez-Corral and Bertalmio (2014), with motion estima-
tion to perform a fast, temporally weighted colour correction
of the video frames. Park et al. (2016) propose a technique
to ensure color consistency across photo collections, estimat-
ing white balance and gamma correction across images. Their
algorithm is robust to correspondence outliers and can achieve
good results with less correspondences than similar techniques
(HaCohen et al., 2013). Xiao et al. (2006) also tackle color
inconsistencies across images due to imaging conditions, with
an emphasis on maintaining colour consistency, but also en-
suring individual images maintain high definition gradients and
wide dynamic range. But all of these algorithms estimate warp-
ing functions controlled by a small number of parameters and
these cannot successfully tackle more complex color mapping
needed in unconstrained scenario of applications of color trans-
fer. Hwang et al. (2014) on the other hand, use moving least
squares to estimate an affine transformation for each pixel in

the target image with the least squares algorithm. This tech-



nique can correct a larger variety of color differences between
images, include large non linear color differences. To tackle
sensitivity to outlier correspondences, only subsets of the corre-
spondences are used as control points and a probabilistic frame-
work is deployed to remove correspondences that are likely to
be incorrect. However all of these methods are only applica-
ble when the correspondences between target pixels and palette

pixels are available.

3. Robust Colour Transfer with £,E

We propose to solve colour transfer by estimating the warp-
ing function ¢ that minimizes a divergence between two prob-
ability density functions. Unlike the OT formulation, which
depends on two random vectors x and y (see Eq 4), only one
random vector y appears explicitly in our modelling, and both
the target pdf p, and palette pdf p, are candidate pdfs for ran-
dom vector y defined in the colour space R*. Our approach to
solving colour transfer is to propose a parametric model p,(y|6)
for the target distribution such that the parameter 6 controls the
mapping function ¢. We propose to formulate the colour trans-

fer problem as a parameter estimation one:

§ = argming{ L2 = llp; - pyl® = [(p)16) = pp(3))dy)

= arg ming [ £2E = |IpiI? ~ 2 (pilpy))
)

While many divergences exist, the £, divergence (or £,E) is
chosen for its robustness and its ease of computation when us-
ing Gaussian mixtures (Scott, 2001; Jian and Vemuri, 2011; Ma
et al., 2015).

In Equation 5 the term || pl? is related to the quadratic Renyi
entropy of p noted R(p) (for both target and palette distribu-

tions):
IpIP* = exp (—R(p)) (0)

while the scalar product term {p;|p) is related similarly to the
Renyi cross entropy between p; and p, (Escolano et al., 2009).
The entropy of the palette ||p[,||2 is not needed for solving this
estimation: we therefore use £, E as our cost function, maxi-

mizing the entropy of the target model R(p,), and maximising
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the overlap between the target and palette pdfs. This frame-
work was first investigated in (Grogan et al., 2015; Grogan and
Dahyot, 2015), and it is extended further here to take advantage
of correspondences that may be available between pixels of the
target image to be recoloured, and the pixels of the palette im-

age used as an exemplar (see Sec. 3.2.2).

Comparing OT and L,E. Interestingly, recent advances in OT
also include an entropy based regularisation term extending Eq.

4 (Bonneel et al., 2016; Courty et al., 2017) such that:
7 = argmin {{c | 7) + A H(m)} @)

Parameter 1 weights the contribution of the negentropy H in
the regularization (Bonneel et al., 2016). The regularized OT
cost (Eq. 7) has a similar form to our £, E cost function (Eq. 5)
where ||p;||* acts as the Renyi entropy based regularization (al-
beit not adjusted with a tuning parameter A) added to the cross
product (p; | p,) (mimicking the term —(c | 7)). Our L, E for-
mulation considers the modelling of a single random variable
(or vector) y for which two pdfs are defined (p; and p,), hence
integration ( | ) is w.r.t. y. In contrast, integration in the OT

formulation is w.r.t. two variables x and y whose interaction is

modelled with the joint density function 7(x, y).

3.1. Parametric pdf p; and pdf p,

The parametric pdf p, representing the distribution of colours
in the target image is modelled as a Gaussian Mixture model
with parameterized means {¢g(u§k))}k= 1.-.K,» Where {ugk)}kq,..,K
are selected by applying the K-means algorithm to the colours
in the target image. The K-means algorithm is equivalent to
using an EM algorithm enforcing identical isotropic covari-
ance matrices (Wu et al., 2007). The faster Minimum Vari-
ance Quantisation (MVQ) algorithm can be used in practice
(see Section 4). Similarly, the pdf p, representing the distri-
bution of colours in the palette image is modelled as a Gaus-
sian Mixture model with means { g‘))}k:h..,K, again where
{,uﬁ,k)}k= 1. x are selected by the K-means algorithm. Both tar-
get and palette Gaussian Mixture models use isotropic identical

covariance matrices controlled by a bandwidth A:

Y =h1 (8)



Method Reference Correspondences | No  Correspon- | Open source Tmage Video Test P ~ T | Test P # T
dences (Sec. 4.1) (Sec. 4.2)
Ours v v v v v v v
Bonneel Bonneel v v v - v v
et al. (2015)
PMLS Hwang et al. v v v v
(2014)
Ferradans Ferradans v v v v v
et al. (2013)
Pitié Pitié et al. v v v v v
(2007)
Park Park et al. | v/ v v v
(2016)
Xia Xia et al | v v v v
(2017)

Table 1. Road-map for experiments. Our framework is able to take advantage of correspondences (Corr) between Target (T) and Palette (P) images when

available, and without correspondences (No Corr). While correspondences are easily available when palette and target images capture the same visual

content (P ~ T'), they are not available when using images of different content (P # T).

with the identity matrix I.

The transfer function ¢ : x € RY — ¢,y(x) € R? can be con-
veniently defined as a rigid, affine or Thin Plate Splines para-
metric function (Escolano et al., 2009; Jian and Vemuri, 2011)

which can be written as:

Po(x) = Ax+0+ij Y(lx—cild =Ax+o0o+WH¥x) (9
Affine J=1

nonlinear
Discarding the non linear part of ¢ provides an affine warp-
ing function which can be further limited to a rigid transforma-
tion by choosing A as a rotation matrix. While earlier colour
transfer approaches estimated affine transfer functions (Rein-
hard et al., 2001; Piti¢ and Kokaram, 2007), they are limited
in the type of results that they can achieve (Hwang et al.,
2014). Recent methods have therefore considered more com-
plex transformations (Hwang et al., 2014; Bonneel et al., 2013).
Similarly, we decided to use the non-linear TPS transforma-
tion for our colour transfer function. For the TPS transfor-
mation, the latent parameter of interest, 6, corresponds to the

set of coeflicients {w; € R4}, the d x d matrix A and the d-

dimensional vector offset 0. The non linear part can be rewrit-
ten in matrix form with a d X m matrix W gathering coefficients
{w; € R?}, and an m dimensional vector W(x) collating all val-
ues {((|lx—c;ll) = —|lx—c;ll}. While many algorithms using TPS
chose the set of control points {c;};-1. . as a subset of the ob-
servations {x} (Chui and Rangarajan, 2003; Myronenko and
Song, 2010), we choose the m control points {c;};=1,...» on a
regular grid spanning the 3D colour space such that the 3D grid
has m = 5x 5% 5 = 125 control points in the colour space. The
dimension of our latent space to explore for the estimation of 6

is:

dim(@) = 125x3 +9 + 3 = 387

with dim(c;) = 3, Vj, dim(A) = 3 X3 = 9 and dim(0o) = 3
(cf. Eq. 9). Our choice of control points allows us to combine
and easily create new warping functions using interpolation be-

tween parameter estimates (see Sec. 3.4).



3.2. Computing LHE

In £,E, the term || p,||2 can be computed as follows:

K K
PP = > > N(O: o) = guu™), 20°D 7Pz (10)

i=1 k=1

where N(0; ¢o(u) — ¢o(u'”), h21) is the Normal distribution

computed at 0 with mean ¢g(y§k))—¢g(y§i)) with covariance 2A21.

The weights {n (’)} =1, x are chosen equiprobable with ﬂ(l) 11<

3.2.1. Computing {p:|p,) without correspondences

The cross product can likewise be computed as:

K
D UNO; ¢ = p0 20D 7P (D

M-

(pidpp) =
i=1 k=1
with the weights {ﬂg)}izlf.“, x chosen equiprobable ﬂg) = % like-
wise as for p;.
3.2.2. Computing {p:|pp) using correspondences
Pixel pairs between target and palette images, denoted

(G, X e,

and palette images capturing the same scene.

.1, can be computed when considering target
Colour trans-
fer techniques are indeed often used in this context to har-
monise colours across a video sequence and/or across multi-
ple view images such as in the bullet time visual effect. In
this case, the means of the Gaussian mixtures are set such that
() = @) e,

defining the distributions p; and p,. Moreover, the scalar prod-

., imposing K; = K, = n when

uct {p;|pp) in our cost function is then simplified as follows:

(Pilpy) = ZN(O o) = 28D 1P 7Y (12)

The computational complexity of this term is thenn = K; = K,
when using n correspondences, and K; X K, without correspon-
dences. Performance of our approach with correspondences is
assessed in Section 4 using palette and target images with simi-
lar content. Pixel correspondences are not used when consider-
ing palette and target images with different content and MVQ is
used instead to define the K centroids for each target and model

pdfs.

3.3. Regularisation of LyE and estimation of 6

Regularisation terms, priors on 6 or ¢, can also be added to
L>FE to constrain the estimation of 6 (Jian and Vemuri, 2011;
Arellano and Dahyot, 2012). To enforce that a smooth solution
¢ is estimated, the £, E divergence is minimised with a rough-
ness penalty on the transfer function ¢ (Escolano et al., 2009)

and the estimation is performed as:

é=argm9in{0<9>= PP = 2pilpy) + 4 f ||Dz¢<x,9>||2dx}

13)
with [ID*6(x, ) = 2,-,]-6”,.,,,‘1)(%)2 with d = 3 for the
colour spaces. Computation of 8 is performed by standard gra-
dient descent algorithm with simulated annealing where the
bandwidth % is used as a temperature (Grogan and Dahyot,

2017).

3.4. Parallel Computing of Recolouring step

One of the main advantages of this method is the fact that
our transformation is controlled by a parameter 8 and any pixel
x can be recoloured by computing the new colour value ¢y(x).
This computation can be done in parallel by distributing the
pixels to be recoloured to the multiple processors that are avail-
able. Moreover, with one target image and N palette images of
choice, the transformations {6, -- ,fy} can also be estimated

in parallel, and any interpolated new value 6 can be used for

recolouring:
N N
brow = Y i 0y, with > y;=Tandy; 20Vj  (14)
— —

Interpolating in the 6 space to create a new warping function
is made easy thanks to the fact that we chose control points on
a regular grid and not as sub samples of palette images. Of
particular interest is the creation of smooth temporal transitions
between the identity warping function and a colouring warping
function for instance.

Once estimated, the parametric transformation can be easily
applied to video content (Grogan and Dahyot, 2015; Frigo et al.,
2015b). Interpolating between two parametric transformations

6; and 8, can also be used to create interesting effects in images.



Palette 2

/L

(a) Result using seg. mask

s i > e
(b) Result using 3D mask (c) Result using luminance
mask

Fig. 2. The effect different masks y(p) can have when recolouring the target image (bottom left) using two palettes, Palette 1 and 2 (top left). Result (a) was

generated using an alpha mask which segments foreground from background, (b) was generated using a mask that was created taking into account the 3D

face information, and (c) was generated using a mask that varies depending on the luminance of the original image. Images are sourced from pixabay.com.

The interpolating weight can also vary over time y(¢) € [0; 1]
to create dissolve effects between colour palettes in videos. In
this case, for each colour pixel x at pixel spatial location p =
(p1, p2) in the sequence at time ¢, the recolouring is computed

as (Grogan and Dahyot, 2015):
xX(p.t) > ¢ (x. 70 B + (1 = (1) by) (15)

We extend this idea further using interpolation weights that vary
spatially as well as in the temporal domain where pixels are

recoloured as follows:

(p) = (v b+ (U =y(p.0)d)  (16)

y(p,t) is a dynamic grey scale mask with values between 0 and
1.

Figure 2 presents some examples of results on images'. In
this figure, pixels in the target image whose corresponding pixel
in the grey scale mask is black have been recoloured using
palette 1, and those whose corresponding pixel is white have
been recoloured using palette 2. The remaining pixels have
been recoloured using an interpolation between the two trans-
formations, #, and 6,. For each pixel this interpolation is deter-

mined by the value of its corresponding pixel in the grey scale

ISupplementary results for videos are provided by the authors.

mask. Figure 2 highlights the different effects that can be easily
created using the same palettes as input, but by changing the
mask used for interpolation. The mask in Figure 2 (a) is an al-
pha matte that segments background from foreground. In (b),
the mask was generated by first fitting a 3D morphable model
to the face in the image (Bas et al., 2016; Ramanan, 2012), and
as the direction of the normal vectors of the 3D face change,
the colours in the mask change from white to black. The back-
ground of this mask also has a fade effect from left to right. The
mask in (c) was generated by first converting the target image
to grey scale and then editing the brightness and contrast of this
image.

These effects can be extended to mixing more than 2 trans-
formations (or palettes). A simpler interpolation between the
identity transformation 89 and an estimated transformation &

with a selected colour palette can also be created:

xX(p, 1) = ¢ (x, (0 0 + (1 = y()) 0) (17)

This gives the user the flexibility to transition smoothly from
one colour mood to another.

Having a quick recolouring step is essential to give the user
instant feedback about the new effects being applied to the im-
age or video. Our transformation can be applied to each pixel

independently and it is therefore highly parallelisable. A CPU



or GPU parallel implementation would ensure that the target
image is recoloured almost instantly. For our implementation
we parallelised the recolouring step on the CPU using OpenMP,

and performance is assessed in Section 4.4.

4. Experimental results

Table 1 summarizes some state of the art techniques com-
pared to our method in different scenarios. In this section
we present further qualitative and quantitative comparisons be-
tween our technique and these methods. To quantitatively as-
sess recolouring results, three metrics - peak signal to noise ra-
tio (PSNR), structural similarity index (SSIM) and colour im-
age difference (CID) - are often used when considering palette
and target images of the same content for which correspon-
dences are easily available (Lissner et al., 2013; Oliveira et al.,
2015; Hwang et al., 2014; Bellavia and Colombo, 2018). Al-
ternatively user studies have also been used to assess the per-
ceptual visual quality of the recolouring (Hristova et al., 2015).
We evaluate our proposed algorithms and show that they are
comparable to current state of the art colour transfer algorithms
in terms of the perceptual quality of the results (paragraphs
4.1, 4.2 and 4.3), and superior in terms of computational speed
(paragraph 4.4). We use colour values represented in the RGB
space, but further comparison between LAB and RGB colour
spaces can be found in Grogan and Dahyot (2017). We use
TPngl‘f to notate the version of our colour transfer algorithm
that uses K-Means to estimate the Gaussian Mixture model
means (Sec. 3.2.1), and TPSng‘Z" to notate the version that takes
into account pixel correspondences instead (Sec. 3.2.2). The
code we used to implement our method has also been made

available online 2.

4.1. Images with similar content P ~ T

One important application of colour transfer is in harmonis-
ing the colour palette of several images or videos capturing the

same scene. To evaluate our algorithm applied to images with

*https://github.com/groganma/gmm- colour-transfer
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similar content, we use the 15 images in the dataset provided by
Hwang et al. (2014)® which includes images with many differ-
ent types of colour changes including different illuminations,
different camera settings and different colour touch up styles.
This dataset provides palette images which have been aligned
to match the target image. To define correspondences, pixels at
the same location in the target and aligned palette images are
selected together to form a pair. Note that results using PMLS

were provided by the authors (Hwang et al., 2014).

Table 2 provides a quantitative evaluation of our proposed
methods in comparison to leading state of the art colour trans-
fer methods, and Figure 3 presents results for visual comparison
(c.f. notations explained in Table 1). Here, we compare algo-
rithms that account for correspondences (in green) and those
that do not (in blue). We found that due to the simpler paramet-
ric transformations estimated, both Xia and Park fail to cor-
rect more non-linear colour differences between images (see
Columns 4 and 5 of Fig 3 ), which is also reflected in their
low quantitative scores in Table 2. Optimal transport techniques
such as those proposed by Pitié, Bonneel* and Ferradans, do not
account for colour correspondences between images. When the
content of the target and palette images are practically identical,
OT methods perform reasonably well as they try to match the
colour distributions of the target and palette images exactly, but
similar to our K-means approach TPng’,‘f , they cannot compete
with correspondence based techniques such as PMLS or our
TPS%‘Z’ approach, which perform significantly better in terms

of all three metrics (Table 2).

While PMLS performs best in terms of the PSNR, SSIM and
CID metrics, the accuracy of these metrics relies on the fact
that the input images are registered correctly. If this is not the
case, as in Figure 4, these metrics may not accurately capture
all artifacts. In fact, on visual inspection, it is evident that the
PMLS technique introduces visual artifacts when registration

errors are present, as can be seen in Figure 4. Their pixel by

Shttps://sites.google.com/site/unimono/pmls
“#Results for Bonneel were generated using their code and exclude a gradient

smoothing postprocessing step.



pixel least squares recolouring approach causes neighbouring
pixels to differ a lot after recolouring when outliers are present.
While PMLS is not robust to registration errors, our algorithm
indeed is thanks to the robust £, distance. Our approach allows
us to maintain the structure of the original image and to create a
smooth colour transfer result (cf. Figure 4 for comparison). So
to summarise, while PMLS and our TPS%‘;)” algorithm provide
similar quantitative performances as measured by PSNR, SSIM
and CID, TPSng‘;)” in fact provides better qualitative visual re-
sults. (Additional qualitative and quantitative results on all 15

images can be found in the supplementary material.)

tpsnr | SEpsng || #ssme | SEssm || Hew | SEcip

Ferradans | 22.13 0.8 0.877 0.02 0.369 | 0.02
Bonneel | 20.07 1.1 0.838 0.03 0.377 | 0.02
Pitié 25.85 0.9 0.899 0.02 0.330 | 0.02
TPSQZ’ 24.20 0.8 0.908 0.02 0.325 | 0.02
Park 23.71 0.7 0.900 .02 0.367 | 0.02
Xia 21.85 1.1 0.869 0.02 0.474 | 0.05
PMLS 30.82 1.5 0.946 0.02 0.154 | 0.02
TPSﬁ;f;)’“' 30.30 1.5 0.944 0.02 0.172 | 0.02

Table 2. Comparison of our algorithms TPS¢%"” and TPSXY against state of
rgb rgb

the art techniques. Mean and standard error results for the SSIM, PSNR

and CID metrics computed for recoloured images with similar content:

Highest PSNR and SSIM values indicate the best results, while lowest CID

values indicate the best results. The best techniques are highlighted in red.

4.2. Images with different content P #+ T

We compare our algorithm with other optimal transport
based colour transfer techniques (Bonneel et al., 2015; Fer-
radans et al., 2013; Pitié et al., 2007) applied to images of dif-
ferent content and without correspondences. In the case of Fer-
radans et al. (2013), all images were generated using the pa-
rameters 1y = Ay = 1072 and « = (0.1,1,0.1,1). Figure 5
shows that Bonneel and Ferradans methods can create blocky
artifacts in the result image gradient (Row 2, 6, 7). On the other
hand, the gradient smoothing step added to Pitié’s algorithm

ensures that these errors do not appear in their results, creat-

ing images that are more visually pleasing. However, match-
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ing the exact colour distributions of the images can still cre-
ate unwanted colour changes in Pitié’s results when the distri-
butions are very different (Rows 9-11). Ferradans technique,
which relaxes the OT constraint forcing the colour distributions
to match exactly after recolouring, suffers less from these un-
expected colour changes (row 7, 10), although the colours in
their results can be less similar to those in the palette image
(Column 4, row 8, 10, 11). The colours appearing in Bonneel’s
results can also differ from those in the palette (Row 10-11)
as this method only alters the chrominance values of the target
image, leaving the luminance values unchanged. On the other
hand, our algorithm produces results that match the colours in
the palette image well, and the thin plate spline transformation
ensures that the image gradient remains smooth, even when the
colour distributions of the target and palette images are very

different (Rows 10-11).

4.3. Qualitative assessment

Colour transfer methods have also been evaluated using two
subjective user studies, each with 20 participants evaluating 53
sets of images. In each experiment the participants were asked
to choose the colour transfer result that they thought was the
most successful. Out of these 53 sets of images, 38 of them
had a palette and target image with different content (no corre-
spondences available), and 15 of them contained a palette and
target image with the same content (correspondences available
and used). These 15 images were taken from the dataset pro-
vided by Hwang et al. (2014) (cf. paragraph 4.1). For both user
studies, each participant evaluated the results individually. The
display properties and indoor conditions were kept constant for
all participants. The order in which the image sets appeared
was randomised for each participant and a short trial run took
place before each user study to ensure the users adapted to the

task at hand.

4.3.1. User Study I
In our first experiment, each participant was presented with
six images at a time - a target image, a palette image, and four

result images generated using different colour transfer tech-



niques. They then had 20 seconds to view the images (presented
simultaneously side by side) and decide which result image was
the best.

For target and palette images with similar content the four
methods compared were TPS%‘Z’, PMLS, Pitié and Bonneel
(For ease of comparison, we chose only four methods, includ-
ing TPSVCg’Z’, PMLS and Pitié, the three top methods according
to the quantitative results (see Tab. 2). The total number of
times each method was chosen can be seen in Table 3. Convert-
ing these totals to proportions, we used the z-test to compute the
confidence interval on each proportion and compared methods
by determining if their confidence intervals overlap. We found
that TPSng‘;)” was the best method in terms of votes however
the overlapping confidence intervals indicate that TPSVCg’Z’ and
PMLS are not statistically significantly different. Hence these
two methods, PMLS and ours, can be thought of as perform-
ing equally well and both being superior to Pitié and Bonneel
methods.

Similarly for images with different content we compared

TPSXM  Ferradans, Pitié and Bonneel.

b o The total number of
rg

times each method was chosen can be seen in Table 3. Again,
by comparing the confidence interval on the proportions we de-
termined that TPS@’I performs better than both Ferradans and
Bonneel, however there is no statistically significant difference

between TPng’,‘,’I and Pitié.

4.3.2. User Study Il

For our second experiment we used a 2 alternate forced
choice comparison. In this case each participant was presented
with two images at a time - a target image, a palette image,
and two result images generated using different colour transfer
techniques. They then had 15 seconds to view the images and
decide which result image was the best. For target and palette
images with similar content we compared the two methods that
performed best in the previous user study - TPng‘Z’ and PMLS,
and the total number of times each method was chosen can be
seen in Table 4. Again we converted these totals to proportions
and computed the confidence interval on each, and determined

that there was no significant difference between the two. We
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then used the Thurstone Case V analysis to compute preference
scores and confidences intervals for cach method, as seen in
Table 4, and in this case found that the confidence intervals do
not overlap, indicating a significant difference between the two
methods.

Similarly for images with different content we compared the
two techniques that performed best in the previous user study,
TPS@’I and Pitié, the results of which can be seen in Table 4. In
this case both methods were chosen an equal number of times,
indicating again that there is no perceivable difference between

the results of TPSf;’l‘f and Pitié.

User Study I

Similar Content P ~ T

Method Votes | Prop CI on Prop
Bonneel 38 0.127 | (0.089, 0.164)
Pitié 63 0.210 | (0.164, 0.256)
PMLS 98 0.327 | (0.274, 0.380)
TPSVC;Z’ 101 | 0.337 | (0.283, 0.390)

Total 300 1

Different Content P # T

Method Votes | Prop CI on Prop

Bonneel 163
Pitié 211

0.215
0.278

(0.185, 0.244)
(0.246, 0.310)
(0.172, 0.228)
(0.275, 0.341)

Ferradans 152 0.20

TPSS)! 234

Total 760 1

0.308

Table 3. Number of votes given to each method by participants in our first
perceptual study, their corresponding proportion and confidence interval.
According to votes, the best method is indicated in red, second best in

green, third best in blue.

4.4. Computation Time

Our algorithm is split into three parts: the clustering step, the
estimation step of 6 and the recolouring step x — ¢(x, 6). As K-
means can be quite time consuming, we investigated some fast
quantisation methods including those provided by Matlab and
the GNU Image Manipulation Program (GIMP). We found that



User Study II

Similar Content P ~ T

Method | Votes | Prop | ClonProp | Score | CI on score
PMLS 134 0.447 | (0.390,0.503) | -0.19 | (-0.30,-0.08)
TPSZ,‘;,” 166 0.553 | (0.497,0.610) 0.19 (0.08, 0.30)
Total 300 1
Different Content P # T
Method | Votes | Prop | ClonProp | Score | CI on score
Pitié 380 0.5 (0.443,0.557) 0 (-0.11,0.11)
TPSg’,‘f 380 0.5 (0.443, 0.557) 0 (-0.11,0.11)
Total 760 1

Table 4. Number of votes given to each method by participants in our sec-
ond perceptual study, corresponding proportion and confidence interval,

Thurstone score and associated confidence interval.

using Matlab’s minimum variance quantisation method (MVQ)
provided almost identical results to K-means as well as being
much faster and is used as an alternative to K-means to speed

up the clustering step (Table 5).

Estimating #  Recolouring

K=50| 6s || TPS | 1.04s

Clustering

MVQ | 0.005s

Table 5. Computation times in seconds for each step of our algorithm for a
HD (1080 x 1920) image with over 2 million pixels. For the clustering step,
the images were first downsampled to 300 x 350 pixels to reduce computa-

tion time.

The recolouring step on the other hand is highly parallelis-
able and can be applied independently to each pixel. Our im-
plementation uses OpenMP within a Matlab mex file to paral-
lelise this step on 8 CPU threads. All times are computed on
a 2.93GHz Intel CPU with 3GB of RAM with 4 cores and 8
logical processors. In comparison, the GPU implementation
of PMLS takes 4.5 seconds to recolour a 1 million pixel im-
age using an nVIDIA Quadro 4000 as reported in Hwang et al.
(2014), which is 9 times slower than our implementation with
TPS. Similarly, Bonneel et al. (2013) report a time of approx-
imately 3 minutes to recolour 108 frames of a HD segmented

video on an 8 core machine with their algorithm. In compari-
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son, our algorithm would take less than 2 minutes using TPS in

the same situation.

5. L, vs OT for colour transfer

In this paper we have shown that for colour transfer appli-
cations, one of the main advantages of using the proposed L2
framework over OT techniques is its flexibility and its abil-
ity to use correspondences. Indeed OT cannot take correspon-
dences into account when computing its solution whereas our
L2 framework allows seamlessly to take advantage of such cor-
respondences when these are available. Such correspondences
occur naturally in practice in a wide range of applications (e.g.
photo stitching, video recolouring) when target and source im-
ages capture the same scene (i.e. images with similar content)
and color transfer offer a natural solution for harmonizing their
colors. We have also recently demonstrated that this L2 frame-
work cater for user defined correspondences (i.e. for images of
same or different content, or using a restricted colour palette)
allowing user interaction during the recolouring process (Gro-
gan et al., 2017).

When images have very different content, we have shown
that by matching the true colour distributions of the target and
palette images exactly, OT methods cause unexpected colour
changes to appear. Our chosen GMM modelling framework
prevents this from happening since, rather than capturing the
true distribution of the transformed image, it approximates it.
With equals weights and covariance matrices, our transformed
GMM gives less emphasis to the spread of colours associated
with each Gaussian component, and models only how the TPS
transformation effects the colours captured by the Gaussian
means. In this way, our £, framework matches the colour con-
tent of the images, rather than the true colour distribution, giv-
ing improved results even in comparison to other OT methods
that also propose approximating the colour distributions (Fer-
radans et al., 2013). Note that other kernels than Gaussian have
been successfully used with £, for shape registration (Grogan
and Dahyot, 2018) and our solution for colour transfer with £,

is in principle not limited to using GMMs. Finally, constrain-



ing GMMs at boundary values of the colour space (e.g. 0 and
255) can easily be enforced in the proposed L2 based frame-
work (Grogan et al., 2017) preventing saturation to occur.

Frigo et al. (2015b) have suggested fitting a TPS function to
the estimated OT solution as a post process, which would cre-
ate a smoother transfer function for OT and also removes the
OT generated blocky artifacts. This step however may require
robust fitting of TPS to deal with discontinuous mapping in the
OT solution. The strength of the TPS regularisation term that
controls how close or far the TPS solution is from the original
OT solution, would also need to be carefully chosen. In con-
trast, L2 is naturally robust and our GMM formulation tackles
class imbalance for images of different content, both are con-
tributing factors in our approach for fitting a good TPS warping
function.

In terms of computation time (see Table 6), our TPSZ’}f tech-
nique is slightly faster than Pitié when applied to a 1 million
pixel image, while Bonneel and Ferradans are more computa-
tionally intensive. The time taken for our TPSE‘Z " approach
increases linearly as the number of correspondences increases,
and so depends on the accuracy required by the user - more
correspondences will create a more accurate color correction

result, but will take longer to compute.

TpsCorr

TPSKM .
rg

rgb
98s 170s 12s 7s 16s

Ferradans | Bonneel | Pitié

Table 6. Computation times for a 1 million pixel image using Matlab im-
plementations on a 2.93GHz Intel CPU with 3GB of RAM with 4 cores and

8 logical processors. TPSng”b" is applied with 10000 pixel correspondences.

6. Conclusion

We have presented a new framework for colour transfer that
is able to take into account correspondences when these are
available. Our algorithms compete very well with current state
of the art approaches. We have shown that TPSng‘;)”, our corre-
spondence based approach, performs similarly in terms of the
SSIM, PSNR and CID metrics when compared with the current

top techniques, and visual inspection of our results shows that
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our algorithms are more immune to artifacts that can be created
in the gradient ficld of the recoloured image by other methods
(Hwang et al. (2014); Ferradans et al. (2013); Bonneel et al.
(2015)). When correspondences are not available, our £, for-
mulation creates good results even when the colour distribution
of the target and palette images are very different, unlike other
state of the art OT techniques (Pitié et al. (2007); Bonneel et al.
(2015)). Our TPS formulation of the transfer function also en-
sures that the gradient of the recoloured images stay smooth,
removing the need to add an additional smoothing step typi-
cally required by OT techniques (Pitié et al. (2005); Bonneel
et al. (2015); Papadakis et al. (2011)). Our parametric transfer
function also allows for fast recolouring of images and videos.
Moreover transfer functions can be stored and easily combined
and interpolated for creating visual effects. This £, F frame-
work has been extended further to let users enforce correspon-
dences and interactively refine the recolouring (Grogan et al.,

2017).
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Fig. 3. Results on images with similar content on the ‘playground’, ‘mart’, ‘illum’, ‘tonal4’ and ‘gangnam1’ images. On close inspection grainy artifacts
can be seen appearing in some PMLS results (Row 6) - for example, around the car in Column 3 or in the top right corner of the image in Column 2. In

nparison, the results generated by TPSfZ‘Z‘" remain smooth (Row 7). For zoom see Fig. 4.




Fig. 4. A close up look at some of the errors generated using the PMLS
algorithm (Hwang et al., 2014) in comparison to our smooth result with
TPSng”b’ . The structure of the original target image (left) is altered after

recolouring using PMLS but not TPSSZ‘Z’ .
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Fig. 5. Comparison with state of the art techniques with images (P # 7).
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