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Abstract
We propose to automatically populate geo-located virtual cities by harvesting and
analyzing online contents shared on social networks and websites. We show how
pose and motion paths of agents can be realistically rendered using information gath-
ered from social media. 3D cities are automatically generated using open-source
information available online. To provide our final rendering of both static and
dynamic urban scenes, we use Unreal game engine.
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1 INTRODUCTION

Generating pedestrians to populate synthetic scenes with a
plausible distribution is a research area of interest in Com-
puter Animation for the purpose of creating visually realistic
virtual world. Several past studies investigated the interaction
of agents, their motion paths, and the realism of the result-
ing animation.1–3 Perceptual studies indicated that humans are
substantially capable of differentiating real agent behaviors
from synthetically generated ones; as a consequence, there
have been attempts to form rules for generating perceptually
plausible pedestrians.2,4

In this work, we propose to use online data from social
networks, which are common platforms for sharing personal
experiences, for populating cities with pedestrians. Indeed, by
2016, the number of active users in popular social networks
exceeded 300 million users,5 and this number is continuously
increasing. This shared data provide useful information and
clues about how and when people use the space in cities,
their locations and orientations in that space, what they think
about it, and their sentiments.6 This content shared online can
provide important information for efficiently populating 3D
geo-located virtual cities by providing an accurate distribution
of crowds that is both spatially heterogeneous and varying
over time. This can be useful for the simulations of populated
virtual cities, for generating populated game environments,
and creating more lively virtual visits for tourists.

We propose to create static agents, positioned and ori-
ented according to shared visual content on social media
platforms, and dynamic agents that follow motion paths

produced by exploiting GPS coordinates of the shared content
(Section 3). Finally, we propose to visualize our populated
virtual cities in a game engine in order to provide efficient
rendering.

2 RELATED WORK

We first present some past studies related to our work on
creation of virtual cities and in virtual pedestrians.

2.1 Virtual city generation

In a well-known study, Parish and Müller7 produce virtual
cities using a procedural approach based on L-system.8 Their
method takes population and water–land maps as inputs and
generates a virtual city including streets and simplistic build-
ings. A context-aware shape grammar for procedural build-
ing generation was introduced by improving L-system.9,10

Thomas and Donikian11 proposed a city generation method
that is dedicated to facilitating plausible behavioral anima-
tions for virtual agents.

More recently, several works have proposed image-based
techniques for generating cities using 3D shape inference
from multiple views.12,13 However, the resulting dense 3D
representation of the environment can be computationally
intensive to manipulate in a game engine; in particular, when
a large area of a city is animated. Our approach for generat-
ing cities uses information from OpenStreetMap as explained
below.
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FIGURE 1 Left: definition of a building in OpenStreetMap. Each building has a contour formed by a polygon ( < way > ) with geo-coordinates ( < node > )

and may include optional extra information. Top right: corresponding area on map; bottom right: generated building

In OpenStreetMap, each area such as a building or gar-
den is associated with a polygonal footprint for which
geo-coordinates are indicated at each corner. When generat-
ing a city, we first transform all geo-coordinates to our model
space such that the center of the generated area is transformed
to the origin. Then for each building, a 3D mesh model is
generated by converting the building contours to walls. The
optional information in OpenStreetMap, “building-height” or
“num-levels,” determines the heights of the buildings if any
of them is present. Otherwise, a default value is assigned.
The textures of the buildings are assigned by repeating a unit
element along the walls of the buildings. Figure 1 shows
an example building definition from OpenStreetMap in xml
format.

Similarly, roads are generated based on the information
present in OpenStreetMap and, their usage by pedestrians is
restricted to have a more natural motion path. It is possible
to utilize more information such as trees, traffic signs, and
bus stops to generate more detailed cities; however, for the
current study, we are mainly interested in building and road
structures.

While our approach is limited for representing complex
architectures, the general city structure can be generated very
quickly. Our simple mesh models provide real-time rendering
capabilities for game engines when considering large-scale
cities. Figure 2 shows examples of generated cities. Another
advantage is that the generated cities can be kept up-to-date
when the utilized information shared online is also kept
up-to-date (on OpenStreetMap).

2.2 Generating and controlling pedestrians

Terzopoulos proposed an artificial life framework emulat-
ing the rich complexity of pedestrians in urban environments
integrating motor, perceptual, behavioral, and cognitive

components for modeling pedestrians as autonomous agents.1

The resulting platform is used as a simulator for large-scale
distributed visual sensor network with applications to video
surveillance. Several classes of behaviors are predefined for
pedestrians in a virtual train station (e.g., commuters and
tourists).14

Ennis et al. studied the perception of pedestrian formations2

in virtual open urban spaces in static scenes. To generate
realistic situations, images capturing the environment are
manually labeled to mark people’s position and orientation in
the space. Ren et al.15 detect and tract pedestrians in videos for
the purpose of inserting virtual characters in the video (mixed
reality). Dynamic path planning is used for animating virtual
pedestrians avoiding collision with real ones.

Lerner et al16 present a crowd simulation technique based
on examples created from tracked video segments of real
pedestrian crowds. In a following study, they used real
crowd videos to evaluate the naturalness of individual agent
behaviors.17 In a similar study, Lee et al18 utilize aerial videos
to obtain examples of motion trajectories, which are later
used in similar cases. Both of these methods require manually
tracking pedestrians in the input videos to form a set of pos-
sible pedestrian behaviors. More recently, such video-driven
methods are improved in terms of the capability of track-
ing pedestrians in videos19 and inferring plausible motion
paths.20,21

3 POPULATING VIRTUAL WORLD

3.1 System overview

Our aim is to populate the 3D environments that have a corre-
spondence in real world, such as the ones shown in Figure 2,
according to data gathered from social media. Figure 3 shows
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FIGURE 2 Sample cities generated using our approach explained in Section 2.1

FIGURE 3 Overview

an overview of our study. Similarly to Dahyot et al.,6 we
harvest publicly shared localized content from two popular
social networks, Twitter and Instagram, using their public
application programming interface.

Each shared post has accompanying geo-coordinates and
time stamp, as well as textual and visual content. The GPS
coordinates correspond to where the post has been sent on
the social network, which is different from where the image
associated with the post has been taken. The GPS location
of the post is accurate within about 8 m, which can be uti-
lized for our purposes.22 For the experiments in this paper,
we have accumulated social media activity for 3 weeks around
Dublin city center, which includes 2,568 posts each of which
is accompanied with a photo.

We follow two different strategies to generate static and
dynamic agents. For the static case, it is crucial to correctly
identify the orientations of individual agents for a perceptu-
ally plausible representation.2 Therefore, we utilize the shared
visual content to determine the visible scene and the location
of the photographer.

Note that the geo-location accompanying a harvested post
belongs to the location of the mobile device when sharing
the content rather than the location where the photo is taken.
Thus, it is not reliable to assume that the photo is taken at the
specified location. However, we can reliably assume that the
user has physically appeared at that location to post the con-
tent in social media, which is utilized for generating the paths
of dynamic agents.

3.2 Static agents

Our main idea is to generate virtual agents whose position and
orientation are determined according to those of real social
media users when they take their shared photos. We assume
that people have similar visual interest; thus, if a region is
photographed by a user, it is assumed that this spot is visu-
ally interesting, and we can expect other people in the space
to share the same focus of attention and look at the same
spot. The camera parameters that are used to take the shared
photos need to be found first to infer the position and the
orientation of the photographer. To achieve that, similarly to
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FIGURE 4 Sample results from extracting photo locations. Top row shows the input images and bottom row shows the found correspondences from the

reference set. The black areas are due to transformations to match the visible areas of the images

Zhang et al.,23 we search the shared visible region in a set
of reference images for which the location and orientation
information is already known. The reference set is formed by
Google Street View images, which are homogeneously dis-
tributed along streets and publicly available with a maximum
resolution of 640 × 640.

3.2.1 Extracting locations
Image localization is based on scale invariant feature trans-
form (SIFT) feature matching between the photos obtained
from social media and a set of reference images queried from
Google Street View. It is assumed that the images in the refer-
ence set have accurate geo-locations, that is, with an error not
exceeding a few meters. Each shared post is also accompanied
with a GPS-based geo-location corresponding to the location
of the mobile device at the time of posting, rather than the
location where the image was taken. Therefore, to find where
the image was actually taken, we search available reference
images within a radius r of the posted content’s location. A
larger value of r increases the probability of having the cor-
rect correspondence in the reference set while requiring more
comparisons as the size of the reference set is proportional
to r2.

It is worth noting that the majority of the images do not
have a correct correspondence in the reference set, as most
of the shared photos are taken indoors or their content are
not relevant to surrounding visual environment, for example,
personal items, food, and so on. Besides, the photos may
be taken at very far locations, which makes it impractical to
include them in the set of reference images. Consequently, we

target the photos of the environment that are shared within
a sufficiently close location to where they are actually taken
and set r as 100 m.

Camera parameters correspond to location, orientation, and
focal length. Parameters for an input image are initialized with
the parameters of the most similar image in the reference set
according to SIFT feature matching.24 Then, to avoid incor-
rectly matched image pairs, a Fundamental matrix is searched
between corresponding feature points of the input and ref-
erence images with random sample consensus (RANSAC)
method. If a Fundamental matrix cannot be constructed, the
image pairs are eliminated.

The camera parameters of remaining input images are fur-
ther refined to match with the captured physical regions. We
achieve this by employing homography, which provides a
perspective transformation matrix between the input and ref-
erence images. Using the acquired transformation matrix, we
refine the orientation and focal length of each input image
for a better alignment with the visible area in the corre-
sponding reference image. Figure 4 shows several results
from detected locations. Out of the 2,568 photos in our input
data set, 171 locations are extracted for static agents. The
main reason for the low recall rate is the high percentage of
irrelevant photos, that is, more than 65% of the posted pic-
tures are unusable as these capture food or personal items
for instance.

3.2.2 Generating groups
Group behaviors of agents have also been well-studied.25,26

It is more realistic to have groups of agents rather than
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having only agents on their own. To generate groups of peo-
ple, we again utilize the shared visual content, and we infer
the number of members in a group according to the number of

detected frontal faces27 in the photo, assuming that the faces
directed towards the camera are related to the photographer
sharing the picture.

FIGURE 5 Left: input images from social media in the front square of Trinity College Dublin. Right: corresponding groups of agents (building models from

Metropolis project,28 for a better evaluation). For instance, in the top row, the two detected faces (depicted with the circles) lead to generating two agents and

the photographer in front of the campanile

FIGURE 6 Generated groups formations. Left: the agents in the group form a conversation circle. Right: the agents are placed forming a line for taking a photo
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After determining the number of agents in a group, for a
plausible group behavior, it is important to place and orient
each of the members in a meaningful way according to the

context and other agents. For that purpose, we either make
the group members form a conversation circle or line them
up in front of the point of interest while one of them takes

FIGURE 7 Left: spatial distribution of social activity. Right: temporal distribution of activity, each bin corresponds to an hour of day. (Top row: Dublin,

bottom row: Pittsburgh)

FIGURE 8 A generated agent’s states of motion
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their picture, mimicking the scenario in the shared photo
(see Figures 5 and 6).

3.3 Dynamic agents

When determining motion paths, predefined motion paths
lead to uniform agent behaviors and using totally random
paths lead to non-natural walking trajectories. We propose a
method that distributes agents according to real-users’ social
media activity. For instance, a street with a higher number

of social media activity should appear crowded with more
pedestrians in our virtual environment.

Although social media activity does not directly provide
the walking trajectories of individual users, that is, a very few
proportion of users share multiple posts at different locations
during a day, the overall activity accumulated from the entire
community can still inform us about the spatial and tempo-
ral distribution of pedestrians in a city. Figure 7 shows the
distribution of social media activity around several cities.

FIGURE 9 Simultaneous views of different areas at the same city (with M = 1,500)
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The geo-locations of the shared posts are directly utilized
in dynamic agent generation part without analyzing the con-
tents of the shared media as we are mainly interested in where
the user has physically appeared. After accumulating social
media activity for a sufficiently long time (about 3 weeks in
our experiments), we get a set of posts each having a loca-
tion and time information. While this information is used to
control the density of pedestrians, our system takes the max-
imum number of active pedestrians M as an input from the
user providing a control on the overall density. At each time
of the day, the number of dynamic agents are determined by
M and the temporal distribution of social media activity.

We initialize M passive agents inside randomly selected
buildings. By passive pedestrians we mean the ones standing
inside a building, therefore, they are not visible in the streets.
At the most active time of the day, all M pedestrians become
active, and at other times, the number of active agents are
adjusted proportionally to the volume of social media activity
at that time.

To achieve that, our system initially calculates the largest
number of posts shared within a 1-hr window of the whole day
(noted Nmax). Then it continuously keeps track of the number
of posts shared within the following hour, denoted by Ncurrent.
Then the desired number of active agents becomes

Adesired = M × Ncurrent

Nmax
. (1)

Each active agent moves to one of the currently available tar-
gets, which is formed by the locations of the posts shared
within the following hour, that is, contributing to Ncurrent.
It is worth noting that the available targets are formed by
the activity of the whole community rather than consecu-
tive posts from a single individual. When the agent reaches
the target, he stands for a while and performs a gesture, for
example, looks at his phone, takes a picture, and so on; then
the agent may become passive, if the number of currently
active agents Acurrent is greater than Adesired or stay active
otherwise. This procedure is shown in Figure 8. Such a strat-
egy provides spatially and temporally different densities of
agents reflecting a real-world distribution. Figure 9 shows an
example of dynamic agent management process. As seen in
this figure, at different times of the day, agents are differ-
ently distributed in the streets. Note that the proposed method
defines motion targets rather than precisely providing motion
trajectories for each agent. It is possible to employ other
agent behavior-related studies such as3 that determines how
an agent travels between two points and how he interacts with
other agents.

4 DISCUSSION AND CONCLUSION

We have proposed a processing pipeline that automatically
generate virtual cities using up-to-date online geographic
information system (OpenStreetMap) and populate these

worlds using information extracted from real people post-
ing on social networks (Twitter, Instagram). Using additional
geo-located image repositories (Google Street View), orien-
tation of pedestrians taking and sharing pictures is recovered
to inform the game engine of both location and orientation of
agents in the virtual world. The static and dynamic rendering
has been performed using the Unreal engine.

Generating plausible pedestrians, placed and oriented in a
meaningful way or moving in the city to reflect real distri-
bution of crowds, can find useful applications in games, for
instance, where using social media data to generate agents
can provide timely information about the distribution of peo-
ple in a city. Information extracted from social networks can
ultimately have an impact for mixed, virtual, and augmented
realities.

Our strategy directs agents to places more often when
they are more demanded by real people, for instance,
entertainment-related areas may be more crowded at later
hours or at weekend. It can be argued that the proposed
method for locating static agents is biased towards reflecting
tourists’ activities rather than gathering overall behavior of all
people in the city. While this is true to some extent, the shared
photos still provide meaningful places for pedestrians to stand
for a while such as visual points of interest and places where
temporary events happen.

It is worth noting that, in this study, we do not use a
one-to-one mapping between social media activity and virtual
pedestrians as there are far less activity in social media com-
pared to real pedestrians. Therefore, as explained in Section
3.3, we accumulate the activity for a period of time, for
example, 3 weeks in our experiments, to get sufficient data of
pedestrians providing a smoother distribution. This strategy
also helps compensating the discarded photos that are shared
outside of the search radius (Section 3.2).

Our system is currently having a few limitations that will
be overcome in our future work. This includes improving our
building geometry and textures that are currently not real-
istic and implementing collision avoidance for the agents.
Future work will also investigate how social media and online
websites can provide rich, dynamic, and realistic content for
creating virtual visits that are both entertaining and inter-
active. For instance, it may be possible to acquire semantic
information related to the different areas of the city by ana-
lyzing the textual content of the shared posts and utilizing
extra data available in OpenStreetMap such as the types of the
buildings, for example, residence, retail, school, and so on,
or opening hours of retail shops. Such semantic information
can be used for refining the behaviors and the motion paths of
the agents.

Investigating the possibilities of utilizing social media and
other publicly available sources for simulating vehicle traffic
in virtual worlds on top of pedestrians is another interesting
future research direction. Recently, Chao et al.29 have ana-
lyzed this mixed traffic situation and proposed a method for
modeling vehicle–pedestrian interaction behaviors.
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Evaluation of the presented study is a challenging one as
there is not a ground truth or state-of-the-art methods that are
directly comparable. We have visually presented the results of
static and dynamic pedestrian generation methods (Figures 5
and 9). One possible means of further verification is sub-
jective evaluation of the results by people who are familiar
with the simulated areas. Comprehensive evaluation of the
presented methods also remains as an important direction of
future work.
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