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ABSTRACT
Abundant image and sensory data collected over the last
decades represents an invaluable source of information for
cataloging and monitoring of the environment. Fusion of het-
erogeneous data sources is a challenging but promising tool
to efficiently leverage such information. In this work we pro-
pose a pipeline for automatic detection and geolocation of
recurring stationary objects deployed on fusion scenario of
street level imagery and LiDAR point cloud data. The objects
are geolocated coherently using a fusion procedure formal-
ized as a Markov random field problem. This allows us to ef-
ficiently combine information from object segmentation, tri-
angulation, monocular depth estimation and position match-
ing with LiDAR data. The proposed fusion approach pro-
duces object mappings robust to scenes reporting multiple
object instances. We introduce a new challenging dataset of
over 200 traffic lights in Dublin city centre and demonstrate
high performance of the proposed methodology and its ca-
pacity to perform multi-sensor data fusion.

Index Terms— Object geolocation, street level imagery,
LiDAR data, Markov random fields, traffic lights

1. INTRODUCTION

The last decade has witnessed unprecedented develop-
ments in computer vision largely due to the availability of
immense image datasets accumulated by companies and in-
dividual users all around the world. Georeferenced imagery
is a unique source of information for monitoring, cataloging
and mapping tasks laying at the heart of various navigation,
management and planning problems. Such imagery includes
street level collections, like Google Street View (GSV) and
Bing Streetside, as well as other sources of information such
as satellite imagery, ground and airborne 3d point clouds. In
this work we address geolocation of objects such as road-side
furniture, facade elements, and street vegetation. Inventory
and geolocation of such objects is a highly relevant task which
OpenStreetMap and Mapillary address by encouraging their
users to perform manually thus enriching their databases.
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Fig. 1. Multi-sensor fusion pipeline: from street level images
and LiDAR scan to object geolocation map.

A considerable effort has been dedicated to leveraging
street level imagery for detection of certain types of road as-
sets, like manholes [1], road signs [2], telecom assets [3], etc.
The geolocation of traffic lights has been addressed in [4]
by relying on fixed lens diameter and in [5, 6] by perform-
ing tracking or template matching in video sequences. These
methods rely on specific geometric shapes of objects and per-
form visual matching of objects. Street level imagery has also
been employed in combination with other data sources: re-
motely sensed optical imagery for road segmentation [7] and
tree detection [8], or airborne LiDAR for land-use segmenta-
tion [9]. In all methods the objects are assumed to be identi-
fied in all the involved image modalities.

Mobile (ground) LiDAR data has been often used for road
scene analysis [10, 11, 12]. Airborne LiDAR data has been
employed for mapping of trees [13], trees and buildings [14]
and cars [15]. Only the mobile scans have been previously
employed to explore smaller road-side object that are on the
edge of the geometric resolution available for airborne scans.
To the best of our knowledge our’s is the first work to exploit
airborne LiDAR scans to such purpose.

We propose a novel model for multi-sensor fusion based



on Markov random fields (MRF) formulation. Our approach
has the capacity to perform information fusion from multi-
ple sources: multi-sensor imagery, heat maps of object den-
sity, multi-temporal imagery, etc. The proposed technique al-
lows automatic processing of multi-object scenes and may be
easily adjusted to detect custom objects thanks to its modular
structure. In this study we explore a particular fusion scenario
of street level imagery and 3d point cloud (LiDAR) data. Per-
formance of the proposed method is validated on traffic lights
(TL) detection. To this end we introduce a new Dublin TLs
dataset. Our earlier work [16] covers a reduced version of the
pipeline for mapping from street level imagery only which is
extended here to multi-sensor fusion with airborne LiDAR.

Our fusion methodology is presented in Sec. 2 and vali-
dated experimentally in Sec. 3. Sec. 4 concludes this study.

2. FUSION PROCEDURE

Our fusion procedure receives as input the detection per-
formed separately on the input data modalities. In this study
we focus on a particular fusion scenario of street level im-
agery and LiDAR point clouds. We propose a complete fu-
sion pipeline with the following components, see Fig. 1: street
level imagery processing module, LiDAR candidate point ex-
traction module and MRF-based information fusion module.

Assumptions To allow automatic processing of multi-
object scenes we impose a mild assumption of object spar-
sity: instances should be at least 1m apart to be uniquely
identified. This assumption may be critical only for objects
that are likely to cluster such as traffic lights and poles. The
street level imagery is considered the primary source of in-
formation and potential object locations are generated from
this data source. This is due to the resolution limitations of
the airborne 3d point cloud dataset: the geometric resolution
may not allow one to identify smaller street furniture. For in-
stance, traffic lights may not be reliably distinguished from
utility poles or lampposts. Furthermore, road-side objects
such as traffic lights and road signs are necessarily visible in
street level imagery due to both higher geometric resolution
and road regulations. Finally, whereas point cloud data is a
more natural source of information for object localization,
airborne scans typically suffer from blind spots in the dense
urban environment: shadows from trees or buildings may re-
sult in invisible instances of street furniture.

Street level imagery processing Two state-of-the-art
fully convolutional neural networks (FCNNs) for semantic
segmentation [17] and monocular depth estimation [18] are
used for processing the street level imagery. The object seg-
mentation module has been prepared using datasets [19, 20]
on TLs images whereas the depth estimation module is em-
ployed with no modifications, see [16] for more information.

LiDAR candidate point extraction The detection of po-
tential object locations is addressed as a template matching
problem. Depending on the type of objects various templates

Fig. 2. Example object geolocation problem based on inter-
sections of street level view-rays. Three objects are observed
from three camera positions. Monocular depth estimates in
green and LiDAR matches depicted by a drone icon.

may be employed. Here we employ a template characterizing
TLs and, more generally, pole-like objects. We assume that
such objects are free-standing with height of h ∈ [2, 6] me-
ters above the ground level. Since the latter is not known a
priori, we instead detect the height above the median eleva-
tion level of all points in 1m radius in (x, y)-plane. This may
result in false positives corresponding to roof-top objects like
antennas or chimneys. The thresholded points are clustered
in 0.2m areas to produce a list of LiDAR candidate points for
the locations of pole-like objects and TLs.

MRF information fusion All objects are assumed to be
located in a subset of intersections of view-rays cast in the di-
rection of the traffic lights segmented in street level imagery.
Formally, we explore the spaceX of all pairwise intersections
from camera locations (see Fig. 2). Binary labels z ∈ {0, 1}
are associated to each node in X : one indicates presence and
zero absence of objects at the intersection. Space Z is con-
sidered a binary MRF [21]. Each site xi is characterized by:

(i) Distances di1 and di2 from cameras obtained through
triangulation of camera positions and rays. Distant intersec-
tion (di· > 25m) are discarded, see red intersection in Fig. 2).

(ii) Monocular depth estimates ∆i1 and ∆i2 of distances
between camera positions and the detected object at xi.

(iii) Distance Li to the closest LiDAR candidate point.
The configuration of objects is found by relying on the

distance information estimated from street level imagery and
3d point cloud data. The neighborhood of node xi is defined
as the set of all other locations xk in X on rays r1 and r2 that
generate it. Note that the number of neighbors (i.e. neighbor-
hood size) for each node xi in X is not constant and depends
on the density of objects (rays) in the area.

We define coherency of configuration Z as follows: Any



ray may have at most one intersection with z = 1 with rays
from any particular camera location, but several positive in-
tersections with rays generated from different cameras are al-
lowed, e.g. multiple intersections for Object1 in Fig. 2.

MRF energy MRF configuration is defined by {(xi, zi)}.
For each site xi with state zi the MRF energy [21] is com-
posed of the following terms:
•Unary term to enforce consistency with depth estimates:

uD(zi|X ,Z) = zi
∑
j=1,2

‖∆ij − dij‖2 (1)

•Unary term to penalize consistency with LiDAR matches:

uL(zi|X ,Z) = ziL
2
i (2)

• Pairwise term that enforces coherency of the configura-
tion. Specifically, along each view ray it penalizes multiple
objects of interest occluding each other, and excessive spread
in case an object is characterized as several intersections. This
term allows us to admit several positive intersections on the
same ray only when they are in close proximity. This may oc-
cur in multi-view scenario due to segmentation inaccuracies
and noise in camera geotag, see in Fig. 2 Object1 detected as
a triangle of intersections with z = 1. The term is defined as
penalty proportional to the distance to any other intersections
xk with zk = 1 on rays r1 and r2:

uC(Ri|X ,Z) =
∑

xm,xn∈Ri

zmzn ‖xm − xn‖2, (3)

where Ri is a subset of X that belongs to the same ray.
• High-order term to penalize rays that have no intersec-

tions with z = 1. This corresponds to false positives or ob-
jects discovered from a single camera position (see Fig. 2):

u0(Ri|X ,Z) =
∏

xn∈Ri

(1− zn) (4)

The full energy of configuration z in Z is defined as sum
of energy contributions over all sites in Z:

U(z) =
∑
∀xi∈X

[
cD uD(zi) + cL uL(zi)

]
+

∑
∀ rays Rj

[
cC uC(Rj) + c0 u0(Rj)

]
,

(5)

with parameter vector C = (cD, cL, cC , c0) with non-
negative components subject to cD + cL + cC + c0 = 1.
Distance-based contributions (1)-(3) in the energy are squared
to non-linearly increase the penalty of position errors. Opti-
mal configuration is reached at the global minimum of U(z).

MRF optimization Energy minimization is achieved
with Iterative Conditional Modes [21] starting from an empty
configuration: z0i = 0,∀i. The local optimization is driven

by a random node-revisiting schedule until local minimum
is reached. Use of more complex optimization method, e.g.
graph-cuts, poses difficulties due to the irregular MRF grid.

Post-processing To obtain the final object configura-
tion we perform clustering of MRF output in order to merge
groups of object instances that describe the same physical ob-
ject. This is relevant since we consider the space X of only
pairwise intersections, whereas some objects are observed
from three or more camera positions and result in multiple
detected object instances, see Object1 in Fig. 2. We employ
agglomerative hierarchical clustering with an intra-cluster
distance of 1m which corresponds to our object sparsity as-
sumption. Object coordinates in each cluster are averaged.

Snapping to the closest LiDAR candidate point may also
be used which results in improved precision but lower recall.

3. EXPERIMENTAL VALIDATION

Dublin TL Dataset. To evaluate the performance of the
proposed pipeline numerically we introduce a traffic light
dataset in 0.75 km2 area in central Dublin, Ireland, available
at github.com/vlkryl/streetview_objectmapping,
see Fig. 3. The dataset consists of GPS-coordinates of all 192
supported (pole-mounted) TLs in 2015 and 209 in 2017 in the
specified area. Dataset contains various types of standard and
multi-section TLs for pedestrians, cars and trams. Any TLs
mounted on the same pole are considered as one object. Sev-
eral suspended poles (above the road) present in the area are
excluded from the set. TLs are clustered around 26 junctions
of different complexity: from 2 to 16 TLs per junction.

Experimental setup. We employ GSV as source of street
level imagery and high resolution airborne LiDAR scan [22]
collected in March 2015. In the area covered by our dataset,
the 3d point cloud contains approximatively 0.4 billion points.
The analysis has revealed about 12300 locations that match
the pole template and 668 locations are in 10m vicinity of the
192 TLs in our dataset. About 10% of TLs in the ground truth
can not be seen in the LiDAR scan due to blind spots and
object proximity. To achieve maximal consistency between
data sources we use GSV imagery recorder in 2014-2015 har-
vested automatically through the Google API. This dataset in-
cludes 1307 panoramic images covering all roads in the area.

The following parameters are set by trial-and-error: depth
weight cD = 0.05, LiDAR weight cL = 0.1, coherency
weight cC = 0.1, and non-paired object penalty c0 = 0.75.
ICM optimization was run for 25 iterations, final cluster-
ing performed with radius of 1m. 847 individual instances
(single-views) of TLs were detected in GSV images, see ex-
amples in [16]. Fig. 3 presents detection results reported by
the proposed fusion technique from depth+LiDAR and depth
only (cL = 0). As can be seen (zoom Fig. 3), the precision of
LiDAR+depth estimates is higher than that of the depth-based
estimates. Depth+LiDAR detection reported 206 objects:
79.5% (88.3%) recall and 81% (96.1%) precision in 3m (5m);



Fig. 3. Dublin TL dataset (�) in 0.75 km2 area inside green
polygon, and depth+LiDAR detection results (F). Zooms in-
clude depth-based detection (�) and LiDAR candidates (N).

95% empirical confidence interval is of 4.4m. The MRF mod-
ule is computed in 6 seconds in a Python implementation on
Ubuntu 16.04, i7-6700K CPU machine with 64 GB RAM.1

In Fig. 4 we analyze the average recall and precision re-
ported by the proposed sensor fusion approach. These are
reported as function of distance l to allow definition of true
positives: An estimated location is considered true positive if
it within l meters of a ground truth point. We plot averages
from 100 reruns of the method to compensate for the stochas-
tic impact of ICM. The top plot shows recall-precision curves
for l ∈ [2.5, 7.5] and cL ∈ [0, 0.2]: for each colored curve cL
grows from bottom-right (cL = 0 on dotted line) to top-left
(cL = 0.2), cL = 0.1 on dashed line. The dashed line corre-
sponds to the parametric setting of Fig. 3 LiDAR+depth ex-
periment, and dotted line to that of the depth-based. For each
l the highest recall corresponds to depth-based detection, i.e.
cL = 0 (dotted line). Detection precision increases dramati-
cally with stronger LiDAR contribution, whereas recall some-
what drops. The latter is due to objects in LiDAR blind spots.

The bottom graph in Fig. 4 shows precision for dif-
ferent data fusion scenarios with pale colored areas show-
ing the interval within one standard deviation of the mean
(due to ICM). “LiDAR” and “depth” models are obtained
by setting cD = 0 and cL = 0, respectively. Snapping in
“depth+LiDAR” fusion scenario allows higher low-distance
precision but with lower recall. The relative position of the
curves clearly demonstrates the contribution of data sources:
LiDAR alone gives higher precision than depths alone, and
the fusion outperforms both single data-source scenarios. The
“depth linear”-plot corresponds to the variant of our approach
proposed in [16] where the distance-based energy terms uD,
uL and uC are linear w.r.t. distances. Quadratic weights im-
prove the performance as clearly seen from the plots. Our
method outperforms [3, 4] due to its capacity to geolocate
multiple visually identical objects from the same scene.

1We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for image processing in this work.

Fig. 4. Average recall-precision of TL detection with
distance-based definition of positives: (top) for LiDAR
weight cL ∈ [0, 0.2], and (bottom) as function of distance.

4. CONCLUSIONS

We have proposed an automatic object geolocation tech-
nique that is capable of fusing information from multi-sensor
data. This is achieved by a novel MRF information fusion ap-
proach defined over irregular grid. This approach allows us to
automatically handle complex multi-object scenes with sparse
image input. Specifically, we have explored the fusion sce-
nario of street level imagery and LiDAR data for geolocation
of recurring stationary street-side objects. To evaluate the per-
formance of the fusion methodology we introduce a challeng-
ing traffic light geolocation dataset of Dublin, in an area fully
covered by publicly available GSV imagery and high resolu-
tion airborne LiDAR scan [22]. Our experiments demonstrate
a clear gain in detection precision associated with the fusion
with LiDAR data with the street level imagery.

As future work we will consider strategies to employ ma-
chine learning for extraction of LiDAR matches which will
also allow one to address geolocation of more complex ob-
jects. Another interesting avenue of investigation is the fu-
sion with oblique drone imagery, e.g. [22, 23], in order to re-
duce the dependency on street level imagery-based triangula-
tion which is sensitive to camera-positioning noise.
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H. Kaartinen, A. Kukko, E. Puttonen, and H. Hyyppä,
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