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a b s t r a c t 

This paper proposes to use a geotagged virtual world for the visualization of people’s visual interest and 

their sentiment as captured from their social network activities. Using mobile devices, people widely 

share their experiences and the things they find interesting through social networks. We experimentally 

show that accumulating information over a period of time from multiple social network users allows 

to efficiently map and visualize popular landmarks as found in cities such as Rome in Italy and Dublin 

in Ireland. The proposed approach is also sensitive to temporal and spatial events that attract visual 

attention. We visualize the calculated popularity on 3D virtual cities using game engine technologies. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the last decade, social networks have become the prominent

means for people for sharing their experience. Thanks to their in-

creasing success, the amount of user generated geolocated time-

stamped multimedia data that is shared online has increased dra-

matically. People’s interests, sentiments and visual attention are

now well reflected into social media and this information is up-to-

date, correlates with spatiotemporal events and reflects user’s rela-

tionships to their immediate environment. In this paper, we define

the concept of visual popularity extracted from social media which

aims at highlighting this linkage between people with their sur-

roundings. We propose to use a mixture of data harvested from

the web for automatically creating up to date 3D environments

reflecting popularity and sentiments associated with locations (cf.

Fig. 1 ). In particular, by analyzing pictures posted on social media,

we propose to find out visually popular structures (e.g., buildings,

monuments) in the environment that attract the most visual atten-

tion, and that deserves pictures to be taken and shared. Secondly,

we propose to automatically visualize these popular landmarks di-

rectly in a 3D environment by controlling illumination in game en-

gines, and alternatively by altering colors of the meshes to enhance

popularity and sentiment visualization ( Sections 3, 4 and 5 ). We

conclude by discussing applications (e.g., games and virtual visits)
� This article was recommended for publication by L.P. Santos. 
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f using social media information along with game technologies in

ection 6 . 

. Related work 

Social media are loosely defined as websites and applications

hat enable users to create and share content, and can be used for

nteracting with other users. Second Life 1 is an example of a so-

ial media platform associated with 3D visual rendering, providing

eal-time avatars for online interaction in the virtual environment

reated by users. In a similar fashion, this paper aims at automat-

cally creating a virtual environment as 3D representation of real

ities, in which information extracted from social media can be

sed to inform users navigating in the virtual space. Of particu-

ar interest is the usage of posted images and the inference of the

ocations they capture. We review first some related work on infer-

ing camera location from photographs and on 3D city reconstruc-

ion. 

nferring locations of pictures. Given an image database of geolo-

ated city street scenes, Zhang and Kosecka proposed to compute

he GPS location of a novel query image using SIFT feature match-

ng [1] . The camera location and orientation of the query image is

stimated also by robust triangulation. Jacobs et al. [2] considered

idely distributed camera networks and aimed at geolocating the

ameras using synchronized natural events (e.g., weather) by com-

aring camera images with geo-registered satellite weather images.
1 Second Life, online virtual world, http://secondlife.com , (15/01/2017). 

http://dx.doi.org/10.1016/j.cag.2017.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.01.005&domain=pdf
mailto:abulbul@ybu.edu.tr
http://ybu.edu.tr/abulbul/
http://secondlife.com
http://dx.doi.org/10.1016/j.cag.2017.01.005


A. Bulbul, R. Dahyot / Computers & Graphics 63 (2017) 28–36 29 

Fig. 1. Popularity based illumination using virtual lighting. A view over Trinity College Dublin (a) is illuminated (b) according to the popularity extracted from geolocated 

images posted on social media. The Trinity College Campanile is the most popular visual landmark building in that area. 
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3 Twitter, social networking service, https://twitter.com , (17/01/2017). 
ays and Efros proposed to estimate the location of a query im-

ge by comparing its visual content with a large dataset of geolo-

ated images covering the world [3] . Their system performed sig-

ificantly better than random chance, with accuracies in the order

f several kilometers. Zamir and Shah proposed to infer the GPS

ocation of an image by matching it with a large dataset of geolo-

ated images from Google street view [4,5] . The closest geolocated

mage in the database provides an estimate of the GPS location of

he query image. More recently, Castaldo et al. [6] proposed to in-

er location of a semantically segmented image (input query) in a

eographic information system. 

Crandall et al. [7] proposed inferring locations of large collec-

ions of images shared in Flickr by utilizing SIFT feature matching

nd similarity of textual information accompanying the photos. In

ddition to organizing the images according to visual and textual

imilarity, their method is also used to reveal the most popular

andmarks. Simon et al. [8] used SIFT features to find out a sub-

et of images from many to generate a meaningful summary of

 scene. Li et al. [9] proposed a method for pose estimation by

eo-registering 3D feature points at a worldwide scale. Middelberg

t al. [10] proposed a similar system for real-time use in mobile

evices by an initial SLAM performed in the mobile device fol-

owed by global registration on the main server. 

D reconstruction of cities. Traditionally creating virtual 3D cities

ave been used in various fields such as computer games, urban

lanning, architectural visualization, crowd and traffic simulations.

or instance, O’Sullivan et al. have created a Virtual Dublin, an in-

eractive model of the city of Dublin (Ireland) developing their own

gre 2 based engine for first person viewing and for real time nav-

gation, in an environment populated with buildings designed by

rtists [11,12] . Such approach for 3D city modeling is labor inten-

ive and gets very quickly out of date when aiming for a realistic

irtual model. As an alternative, 3D reconstruction techniques from

ultiple view images have become popular. In a pioneering work

13–15] , Snavely et al. proposed to use online image collections to

nfer the viewpoint of each photograph and a sparse 3D model

point cloud) of the scene. However, sparse point cloud represen-

ation with many vertices to represent a whole city is not suitable

nd compact enough for a game engine for providing realtime in-

eraction to users. 

Xiao et al. [16] proposed an automatic approach to gener-

te street-side 3D photo-realistic models from images captured at

round level. Their overall approach is based on the availability of

re-computed semi-dense 3D point clouds and camera positions
2 OGRE3D, 3D rendering engine, http://www.ogre3d.org , (17/01/2017). (
based on structure from motion techniques from images with po-

entially additional GPS/INS information available). Priors are then

sed to process point clouds to recover building meshes with tex-

ure map. A reported computation time is 23 h (2 h for SfM, 19 h

or segmentation, and 2 h for partition and modeling) for recon-

tructing 202 building blocks in Pittsburg area from 10,498 images,

n a small cluster composed by 15 normal desktop PCs (in 2009).

ikewise using SfM based approach, Torii et al. [17] reported more

han 30 h for reconstruction on the same dataset. Anguelov et al.

18] presented the work done at Google for capturing images, GPS

ata, and laser range data at street level. The 3D reconstruction is

erformed from laser data to populate Google Earth. 

Matzen and Snavely proposed to reconstruct a 3D spatio-

emporal urban scene from a large online image repository where

cene appearance changes overtime [19] . Such reconstruction is

hen used for automatically time stamping new images. 

. Overview 

Social media data considered in this paper is harvested from

witter 3 and Instagram 

4 . We also use information harvested from

he OpenStreetMap 

5 , such as building footprints with geolocated

andmarks to help creating 3D cities automatically. OpenStreetMap

as the advantage of providing open source data that is constantly

pdated by online contributing users that often have knowledge

f their real local environment. Additional information is automat-

cally extracted from Google Street view. Combining social media

nd 2D maps have found applications for rendering tweet activi-

ies and sentiment maps [20] , and this paper aims at rendering ex-

racted information from social media in 3D virtual environments

hat is suitable for user navigation and interactions. We harvest so-

ial media data using hashtags and/or location based queries, and

entiment scores for the text of the posts are computed and stored

n a database [20] . This information is then visualized in a 3D envi-

onment. Fig. 2 presents an overview of our system. 

Public data shared within Instagram and Twitter are gathered

hrough their public API’s. These data include visual imagery and

ccompanying information such as keywords, time stamps, and

eo-coordinates. While the photos shared through social media re-

ect the popularity of the visible scenery, the majority of these im-

ges, for instance photos of personal items or food, is not useful for

etermining visual popularity of the surroundings. Another impor-

ant feature of photos shared through social media is that they are
4 Instagram, photo-sharing site, https://www.instagram.com , (17/01/2017). 
5 OpenStreetMap, free wiki World map, https://www.openstreetmap.org , 

17/01/2017). 

http://www.ogre3d.org
https://twitter.com
https://www.instagram.com
https://www.openstreetmap.org
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Fig. 2. Overview of our system for visualizing popularity and sentiment extracted from social media in a 3D environment. 
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possibly modified, noisy, or include occluding objects in large por-

tions such as faces in selfies, that make them unreliable for match-

ing with other images taken in the same location using Computer

Vision algorithms. Structure from motion (SfM) algorithms for 3D

reconstruction fail to produce plausible 3D models when the in-

put data contains too many outlier images and partially occluded

images. Social media imagery is therefore not reliable as a source

of information for these algorithms. Instead, we make use of more

reliable and publicly available localized image databases captured

from street level such as Google Street View. Google has a pub-

lic API allowing users to reach street level imagery with a max-

imum of 6 40 × 6 40 resolution. These are distributed almost ho-

mogeneously through the streets, and each of them is accompa-

nied with a geo-coordinate with an error of up to a few meters.

Google’s satellite images and OpenStreetMap’s data providing the

building structures are both used for creating cities in 3D. 

Although the images from social media are not reliable for 3D

reconstruction, they can still be used to get an idea of the vis-

ible area with the presence of reference images. Here, our pur-

pose is determining the most visible regions among images shared

through social media. While this problem resembles the camera lo-

calization problem, in our case the important aspect is determining

the visible area rather than accurately positioning a camera in 3D

space. More specifically, our contributions in this paper are: 

• We consider that a GPS location is already associated to the so-

cial media post and image. We propose harvesting Google street

view images on the fly onl y in the same area to refine the GPS

location as well as recovering the camera parameters of the im-

age in the post ( Section 4 ). 
• We propose to reconstruct a 3D model of cities using infor-

mation from Open Street maps and Google street view. While

Google maps now provides 3D models for buildings, these are

not available through their API. We propose here a cheap and

efficient alternative for creating a 3D virtual model of a city

that can be uploaded to a Game engine for providing first per-

son navigation experience to users. Using Unreal 4 6 , we visu-

alize the reconstructed 3D city providing one player navigation

experience for multiple platforms. 
• Finally, we propose to use this virtual 3D environment for vi-

sualizing information extracted from social media data. In par-

ticular, we show how controlling lights in the virtual environ-

ment allows to highlight popular photographic landmarks. As

such this defines a 3D popularity map similar to a 3D saliency

map because it captures what caught people’s eyes. 
6 https://www.unrealengine.com . 

I  

m  

f  

l  
. Visual popularity computation 

We note S the set of images harvested from social media with

heir location information. We note R , the set of reference im-

ges queried from Google Street View with their camera param-

ters and geo-coordinates. Location information in R is then ac-

urate within a few meters, which is sufficient for our purpose. A

inhole camera model (with translation, rotation, and focal length)

s associated with each image in the reference set [15,21] . For the

mages in S, in addition to the camera parameters to estimate (cf.

ections 4.1 and 4.2 ), we also define a confidence value for com-

uting visual popularity (cf. Section 4.3 ). 

The approach proposed in this paper has been evaluated with

 datasets associated with different cities: Dublin (Ireland), Rome

Italy) and Pittsburgh (USA) (top row of Fig. 8 ). Table 1 presents

he duration (in days), areas (km 

2 ) and corresponding size of the

et S in these scenarios. 

.1. Initialization of camera parameters in S

Camera parameters associated with an image in S are initial-

zed with the parameters of the most similar image in R . We ad-

ress here how reference set R is defined for computational effi-

iency, and how it is used to infer the camera parameters of im-

ges in S . 

etermining the search domain R . Comparing each image in S with

 set R corresponding to all possible Google street view images

s not computationally efficient. Instead the geo-coordinates asso-

iated with each image in S determines the center of the spe-

ific search domain R . Note that, because the geo-coordinates in

may or may not correspond to the location of the device when

he photo is taken but instead the location of the device when

he photo is actually shared on social media, location informa-

ion in S is less accurate than in R (cf. Fig. 3 ). Consequently a

rade-off between the computation time (which changes propor-

ional to the square radius of search domain) and the chance of

he best reference image to be in the search domain R , needs to

e found ( Fig. 4 (b)). Fig. 4 (a) shows a scatter plot of the correctly

ssigned reference image locations relative to the corresponding

ocial media images, i.e., for each query image from S, there is a

ot at the relative 2D location of the corresponding street level im-

ge. Increasing search radius from 100 to 200 m requires 4 times

ore comparisons while increasing the chance of including the

est match by only 23%. 

nitial guess of camera parameters for images in S . To determine the

ost similar image in R to the query image in S, we employ SIFT

eature matching [22] . The straightforward approach would be se-

ecting the image with the highest number of feature matches in

https://www.unrealengine.com
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Table 1 

Visible region estimation for images in S . 

City Area ( km 

2 ) Activity duration |S| |S inlier | Proc. time (min) 

Rome 0.698 20 days 1284 234 (18%) 113 

Pittsburgh 4.826 30 days 5669 158 (3%) 457 

Dublin 0.865 21 days 2568 171 (7%) 328 

Fig. 3. Examples of photos posted on social media with their accompanying geo- 

coordinates and their actual camera locations (Rome). 

Fig. 4. (a) Locations of the best reference images relative to the query images from 

S are shown. The circle depicts 100 m of search radius. (b) bars show the number of 

reference images in the search domain according to its radius. The line plot shows 

the probability of having included the best reference image in the search set. (Data 

is accumulated from the three cities.) 
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Fig. 5. (a) Classification performance of the proposed score vs. number of corre- 

spondences. The closer curve to top left corner is the better. (b) Precision and recall 

according to score threshold ( lt threshold for × and ht threshold for ◦). 
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ur search domain. However, we found that to increase the accu-

acy without sacrificing performance, we can use a simple heuristic

o reward coherence of horizontal positions of successive features

atches. This heuristic is based on the assumption that the im-

ges are taken with a roughly upright orientation and the features

ver corresponding objects should have the same horizontal order-

ng among different pictures. 

Assume that M = { m 

(i ) = (s (i ) 
x , s (i ) 

y , r (i ) 
x , r (i ) 

y ) } i =1 , ... ,n is a set of n

orrespondences between image s ∈ S and image r ∈ R . First, we

ort the correspondences in ascending order according to the hor-

zontal coordinate s x in image s of the correspondences. Then we

lassify correspondences using the horizontal coordinate r x in im-

ge r according to following criterion: 

m 

(i ) ∈ M fa v orable if r (i ) 
x > r (i −1) 

x 

m 

(i ) ∈ M un fa v orable otherwise 
(1) 

he score for image pair ( s , r ) is calculated as: 

core (s, r) = 2 |M fa v orable | − |M un fa v orable | (2)

e have evaluated the accuracy of our heuristic over 2500 photos

rom social media and the corresponding reference images used to
nitialize the cameras. Fig. 5 (a) shows the advantage of using the

roposed score over using the number of correspondences with a

eceiver operating characteristic (ROC) curve. Here, a true-positive

eans that there is an overlap between the image from social me-

ia and the selected reference image. The same set of photos is

lso used to determine the acceptance and rejection criteria of the

mages from social media. Fig. 5 (b) shows the precision and re-

all values according to threshold values. Selecting a high thresh-

ld, e.g., the point denoted with ◦ in the plot provides a high pre-

ision; however, only one third of the correct matches would be

sed. Therefore, we use a low value, shown as × in the plot as the

ejection threshold and set the confidence value of the cameras as:

onfidence (s ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if score (s, r best ) > ht 

0 if score (s, r best ) < lt 

score (s, r best ) − lt 

ht − lt 
otherwise 

, 

(3) 

here lt and ht stands for the low and high thresholds shown in

ig. 5 (b). The geo-coordinates and camera parameters associated

ith the best reference image are transferred to the social media

mage s as well as the confidence value associated with this match.

.2. Refinement of camera parameters in S

The camera parameters of s can be further refined to under-

tand the physical region of interest captured in the image s , and

or a better alignment with the visible area in the corresponding

mage r . In a standard motion estimation problem, where we have

n input camera s and a set of reference cameras from R , the pur-

ose of refinement is finding rotation, translation, and focal length

alues to minimize the total re-projection error of matching be-

ween s and R . This is a simpler form of structure from motion

roblem as all cameras other than s are static. This form of opti-

ization works for precisely calibrated reference cameras, e.g., if

eference cameras consists of SfM outputs. However, when Google

treet-view images are used, the optimization usually do not con-

erge to a plausible solution. In that case, one option is to re-
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Fig. 6. Examples: input images s (left), corresponding most similar reference im- 

ages r (middle) that are used to initialize camera parameters, and right, transformed 

reference images to show the visible area with our refined camera parameters. 

a b

c d

Fig. 7. Images from social media in S that contribute to the popularity of specific 

locations in the experimented cities: (a) Pantheon (Rome), (b) Trinity College Cam- 

panile (Dublin), (c) Trevi Fountain (Rome) and (d) Pittsburgh. 
calibrate the cameras in R before optimizing s , which is a time

consuming process. Besides, even in that case, low quality input

images has a high probability of being erroneously translated by a

large amount, which introduces the risk of having occluding mod-

els in between the region of interest and the camera, i.e.; the cam-

era may incorrectly be placed behind a wall, especially around nar-

row streets, making it unable to show the desired location. 

Therefore, we keep the location of the camera fixed while per-

forming the optimization only on the rotation and focal length

of the camera in image space by employing Homography as fol-

lows: 

̂ (� f, �R) = arg min 

(� f, �R) 

∑ 

m ∈M 

E m 

2 
, (4)

with E m 

= p s − � f�R p r , (5)

where E m 

is the image based re-projection error for the pair m ,

p s and p r are 2D positions of the matching features from input

image s and corresponding reference r . �f and �R are the addi-

tional rotation and focal length that would redirect the camera to

the desired location while keeping its location fixed. This approach

performs well if the features correspondences belong to a roughly

planar surface, or there is not much depth difference throughout

the scene. We have experienced with both full camera refinement

in 3D and our camera refinement with fixed location. Although

our camera refinement step is not sensitive to depth differences

within the visible area, it resulted in more reliable outputs. How-

ever, in presence of precisely calibrated reference cameras and high

quality input images the first method would be a more accurate

option. Fig. 6 shows sample results of the found visible regions

with our technique to refine camera parameters. We have experi-

mented with input images gathered from social media around sev-

eral cities. The publicly available images are pooled from Instagram

and Twitter for a duration between 20 and 30 days. Table 1 shows

the number of photos processed for each city along with the pro-

cessing time when the radius is 100 meters. In this table | S inlier |

stands for the most confident cameras. The outliers among the in-

put images can be very high ( > 80%) depending on the city, e.g.,

more images shared from Rome belong to visual points of interest

compared to the other two cities used in this paper. 

4.3. Visual popularity for 3D models 

Having a set of calibrated cameras in S, the popularity map

over 3D models is computed by taking the confidences of the cam-

eras into account as follow: 

P (e ) = 

∑ 

s ∈ V confidence (s ) 

size (e ) 
, (6)

where e is an element of the set on which we calculate popularity

such as vertices or faces on 3D mesh models and V is the subset of

S in which e is visible. In case the elements have varying areas, a

division by their size, i.e., area of a face, gets rid of the size effect

which would otherwise favor larger elements. For instance, when

the elements are vertices, the size of the elements is constant. 

Fig. 7 shows the images that contribute to the most popular

regions of the experimented cities and Fig. 8 shows examples of

calculated popularity values along with the corresponding regions

from Google 3D Earth View. As seen in these figures, the most pop-

ular areas correspond to the well-known touristic marks. For in-

stance, from the experimented region of Rome, Pantheon ( Fig. 7 (a))

and Trevi Fountain ( Fig. 7 (c)) are found as the most popular archi-

tectures. Similarly, the Trinity College Campanile ( Fig. 7 (b)) is the

most popular point of interest within Dublin’s experimented area.

In Pittsburgh, however, there is a more homogeneous distribution

of popularity, and as seen from Fig. 7 (d) that is because the shared
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Fig. 8. Top: 3D views from Google 3D; Bottom: Our calculated per-building popularity for the corresponding areas. Popularity values are normalized within each area (the 

color red indicating the most popularity values, to the blue color to the lowest ones). Cities from left to right: Dublin, Rome, and Pittsburgh. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Failure examples, Top: input images, Bottom: matches from R . These images 

exemplifies cases caused by repeating structures (leftmost image), upright orienta- 

tion assumption (second image from the left), logos and texts (the two images on 

the right). 
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Fig. 10. Left: Example of buildings generated using our approach. Right: street level 

image from Google street view (top), with our corresponding view in our 3D envi- 

ronment (bottom). 
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hotos are the silhouettes of the city, rather than a specific loca-

ion. 

imitations. Although the popular regions are successfully deter-

ined in most cases, our method suffers from the inherent limita-

ions of SIFT feature matching. For example, the lack of features or

aving reflective surfaces (e.g., glass windows) in large proportions

ecrease detectability of a region. Also, having multiple buildings

ith the same appearance confuses the method as well as com-

any logos which can be found at various locations. Another factor

s the up to dateness of the reference images, e.g., new buildings

nd façade alterations missing in R may cause a lack of correspon-

ences between the query in S and the reference sets. Fig. 9 shows

everal failure cases. 

. Visual popularity rendering 

3D visualization requires a 3D model of the area of interest. 3D

odels of cities created by artists may exist such as the city cen-

er of Dublin built within the Metropolis project [12] , but these

odels are not common and are quickly outdated due to the fast

hanging urban landscape. We propose here a simple and compu-

ationally efficient alternative for creating 3D models of cities with

uildings as elementary elements. Our system is using information

vailable online and our reconstruction can easily be kept up-to-

ate when this information shared online is also kept up-to-date.
ur models are then used within Unreal engine to render visual

opularity of the urban landscape. 

.1. Fast city generation 

Our city generation method is dependent on the availability of

ocalized street-level images (Google Street View images are used)

nd the contour lines showing the areas occupied by the buildings

OpenStreetMap data harvested on the fly is used for building con-

ours). Public access to this information is possible for many areas

f the world and it is getting even more common and widespread.

Building generation is based on back-projecting the street level

mages onto building blocks. Buildings are generated by utilizing

heir contours in OpenStreetMap, where each building is repre-

ented by a 2D polygon and each corner of a polygon is associ-

ted with a geo-coordinate. These geo-coordinates are first trans-

ormed to our model-space coordinates so that we have 2D foot-

rints of each building where one unit length corresponds to 1 m.

hen each edge of the footprint is converted to a simple rectangu-

ar wall by assigning a default height value. After having these ini-

ial 3D models of buildings, each side of them is textured by pro-

ecting corresponding street level images onto them. Finally, a color

hresholding based sky detection method similar to the one used

n [23] is employed to determine the final heights of the build-

ngs. Fig. 10 shows a few examples generated with our approach

or which artifacts occasionally occur. Our approach is limited for

epresenting complex geometries of buildings and its success also

epends on the coherence between geolocated street level imagery
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Table 2 

City generation. 

City Area ( km 

2 ) Num. of buildings Num. of ref locs Generation time (m:s) 

Rome 0.698 543 1323 5:33 

Pittsburgh 4.826 517 5930 14:03 

Dublin 0.865 810 1342 6:12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Illumination with social lights. From top to bottom: Dublin, Rome and Pitts- 

burgh. 
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and the geolocated footprints of buildings which here have been

collected from two providers of data, Google and OpenStreetMap.

Moreover, Google street view images flatten occluding objects such

as trees that are then mapped on our buildings. Image process-

ing algorithms can be used to improve 3D building reconstruction,

including the modeling and texture generation steps by employ-

ing methods based on vanishing lines or by exploiting multiple

views [24,25] . We avoid any complex algorithms in our city gen-

eration step due to the large number of buildings to be gener-

ated efficiently as well as the diversity of our scenarios that in-

clude any type of buildings (e.g., historical) from various time pe-

riods. Table 2 shows our city generation times for several cities, us-

ing not yet optimized research code. Our technique performs very

well considering computation times reported in the review section

( Section 2 ), and we are able to reconstruct large urban areas in a

few minutes on a standard PC. 

5.2. Visualization with social lights 

Each estimated camera view associated with social media

(set S) contributes to the popularity of the visible area. Therefore,

if we represent each of these cameras with a spot light directed to

the same area, the 3D environment would be lit according to their

popularity. However, using camera locations as is do not result in

a natural illumination because the cameras are located very close

to ground level and directed horizontally or even tilted upwards in

many cases. Better natural lighting can be achieved when the lights

are positioned higher looking down from slightly left on the scene

captured in the social media image [26] . Therefore, we elevate the

spot lights and tilt them downwards to lit the area of interest. To

accomplish that, we first determine the average depth of the vis-

ible buildings from a camera’s viewpoint; then the corresponding

light’s height is calculated so that when the light is directed to-

wards the calculated distance it has a 45 degrees of downwards

tilt value. We avoid translating the lights to the left because of the

potential occlusion problems in the scene. The intensities of the

lights are adjusted according to the confidence values associated

with the cameras in S . Fig. 11 shows the three cities illuminated

with their social media oriented lights. 

5.3. Sentiment based coloring 

As each light originate from a social media post, it is possible to

utilize the shared textual content too. We assign a sentiment score

to each post by querying the deep learning based sentiment anal-

ysis tool within CoreNLP library [20,27] . Then, the sentiment score

is reflected to the color of the light by interpolation between yel-

low (positive sentiment), white (neutral sentiment) and blue (neg-

ative sentiment). Fig. 12 illustrates our sentiment rendering ap-

proach. Currently, the sentiment classifier is used in its original

state, which could be improved by training specifically on social

media data. 

6. Discussion and conclusion 

We have presented a platform for automatically creating up-to-

date 3D rendering of cities from data available online. Thanks to

game engine technologies such as Unreal, immersive first person
xperience is provided to navigate in real-time through the recon-

tructed world. Our approach is therefore very suitable for quickly

roviding virtual visit experiences to online users for instance. In

ddition, we have shown how such environment can be used to

verlay information inferred from online social networks [35] , and

n particular providing visual popularity rendering for visualizing

hat people photograph and what they feel about it. The proposed

ystem is sensitive to current trends in visual popularity; in addi-

ion to well-known touristic spots, it is possible to discover visual



A. Bulbul, R. Dahyot / Computers & Graphics 63 (2017) 28–36 35 

Fig. 12. Sentiment based coloring. Top: photos from social media assigned with dif- 

ferent sentiment scores. Bottom: corresponding lights in isolation. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 13. Sample images from social media indicating a visual point of interest. 

We’ve noticed this mural painting as it is significantly illuminated by social lights. 
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Fig. 14. Automatically placing agents according to social media activity. 
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oints of interest those reflect a temporal event or a salient modi-

cation within the environment that attracts people’s attention. A

ural painting ( Fig. 13 ) that we have noticed during this study by

ollowing unexpected social lights in Dublin can be shown as an

xample of that. 

ynthesis of 3D virtual world. When no 3D model (e.g., Metropolis

or Dublin) is available for an area, our current approach for cre-

ting a 3D virtual world is based on efficiently combining building

ootprints with images available from online repositories for cre-

ting more up-to-date neighborhoods. More advanced image pro-

essing algorithms in combination with GIS database could be used

ot only for extracting buildings in cities but also to identify and

fficiently render any individual fixed element composing the land-

cape anywhere (e.g., roads, trees, fields, lakes, mountains). Our

pproach for visualizing 3D visual popularity could ultimately be

alidated in the countryside as long as geolocated pictures posted

nline share content with online repositories. 

eneration of tourist maps and guides. The work presented in this

aper could be further extended to efficiently highlight landmarks

n 2D or 3D maps for users such as tourists visiting an area [28] .

hile information about the nature and functionality of buildings

an be harvested from existing digital map services online (e.g.,

icrosoft Live ( www.live.com ), Google Maps ( maps.google.com )

nd Yahoo Maps ( maps.yahoo.com ), OpenStreetMap), the analysis

f social media data relevant to a particular place and time can

e helpful for highlighting events and exhibitions and inform on

eople sentiment. Our platform could be extended further for effi-

iently visualizing any GIS databases made accessible online. 
aliency. Knowledge of important regions in a scene always plays

 major role in many computer graphics algorithms and applica-

ions such as optimization of the rendering process [29] , model

implification [30] , and guiding designers and artists when build-

ng and refining 3D scenes. Consequently, there have been a lot of

fforts for automatically finding the visually important or salient

egions in 3D environments [31,32] . These models mostly utilize

he distribution of geometric and appearance related features to

etermine the distinct and salient features which is limited to re-

ealing only the bottom up direction of visual attention without

aving user specific factors such as prior experiences and viewer

ntentions [33] which constitutes the top-down direction of visual

ttention and not less important than the scene specific bottom-

p part. Social media based visual popularity can be helpful for

ncluding the top-down factors in determining the visually impor-

ant regions of a city. 

owards a populated virtual environment. Other directions of our

esearch investigate how social networks, online information, game

ngines and virtual reality technologies can be used together for

reating new interactive, immersive and more human experience

nline. Indeed geolocated social network users can be used to

lace avatars [34] , to animate them and to populate the virtual

ities with realistic displacement patterns, for providing human in-

eractions in the context of a virtual visit or a gaming experience

e.g., Fig. 14 ). 
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