Random Walk ARIMA(0,d=1,0)

Note the simulated time series below with differencing \(d=1\):

See Random Walk model https://otexts.com/fpp2/stationarity.html#random-walk-model

require(fma)
tsdisplay(arima.sim(list(order = c(0,1,0)), n = 10000))

Comparison differencing ARIMA(0,d=1,0) with AutoRegressive model ARIMA(p=1,0,0)

Note the simulated AR(1) time series by comparison :

  • model equation is \(y_t=\phi_1\ y_{t-1}+\epsilon_{t}\) with \(|\phi_1|<1\)
  • the time plot does not display trend
  • the ACF plot shows an exponential decrease
  • the PACF(1) is the only non zero coefficient on the PACF plot indicating \(y_{t-1}\) is the only explanatory variable needed for explaining this time series.
require(fma)
tsdisplay(arima.sim(list(order = c(1,0,0), ar = 0.7), n = 10000))

Higher order differencing

Example ARIMA(0,d=2,0)

require(fma)
tsdisplay(arima.sim(list(order = c(0,2,0)), n = 10000))

Example ARIMA(0,d=3,0)

require(fma)
tsdisplay(arima.sim(list(order = c(0,3,0)), n = 10000))

Remark: White noise ARIMA(0,0,0)

See White noise https://otexts.com/fpp2/wn.html

require(fma)
tsdisplay(arima.sim(list(order = c(0,0,0)), n = 10000))