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The Empirical density function

Lets considerer a random sample (observations):

x = (x1, x2, · · · , xn)

We wish to infer properties of the complete population X that yielded the
sample. Lets define the population density function f (.) such that

f  x = (x1, x2, · · · , xn)

Definition

The empirical density function f̂ (.) is defined as:

f̂ (x) = 1
n

∑n
i=1 δ(x − xi )

where δ(·) is the Dirac delta function.
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Parameters

Definition

A parameter, θ, is a function of the probability density function (p.d.f.) f ,
e.g.:

θ = t(f )

if θ is the mean

θ = Ef (x) =

∫+∞
−∞ x f (x)dx = µf

if θ is the variance

θ = Ef [(x − µf )
2] =

∫+∞
−∞ (x − µf )

2 f (x)dx = σ2
f
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Statistics or estimates

Definition

A statistic (also called estimates, estimators) θ̂ is a function of f̂ or the
sample x, e.g.:

θ̂ = t(f̂ )

or also written θ̂ = s(x).

if θ̂ is the mean:

θ̂ = t(f̂ ) =
∫+∞
−∞ x f̂ (x)dx

=
∫+∞
−∞ x 1

n

∑n
i=1 δ(x − xi ) dx

= 1
n

∑n
i=1 xi

= s(x) = x
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Statistics or estimates

if θ̂ is the variance:

θ̂ =
∫+∞
−∞(x − x)2 f̂ (x)dx

= 1
n

∑n
i=1(xi − x)2

= σ̂2
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The Plug-in principle

Definition

The Plug-in estimate of a parameter θ = t(f ) is defined to be:

θ̂ = t(f̂ ).

The function θ = t(f ) of the probability density function f is estimated by the
same function t(.) of the empirical density f̂ .

x is the plug-in estimate of µf .

σ̂ is the plug-in estimate of σf
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Computing the mean knowing f

Example A

Lets assume we know the p.d.f. f :

f (x) = 0.2 N(µ=1,σ=2) + 0.8 N(µ=6,σ=1)

Then the mean is computed:

µf = Ef (x) =
∫+∞
−∞ x f (x) dx

= 0.2 · 1 + 0.8 · 6

= 5
−10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
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Estimating the mean knowing the observations x

Example A

Observations x = (x1, · · · , x100) :



7.0411 4.8397 5.3156 6.7719 7.0616
5.2546 7.3937 4.3376 4.4010 5.1724
7.4199 5.3677 6.7028 6.2003 7.5707
4.1230 3.8914 5.2323 5.5942 7.1479
3.6790 0.3509 1.4197 1.7585 2.4476
−3.8635 2.5731 −0.7367 0.5627 1.6379
−0.1864 2.7004 2.1487 2.3513 1.4833
−1.0138 4.9794 0.1518 2.8683 1.6269
6.9523 5.3073 4.7191 5.4374 4.6108
6.5975 6.3495 7.2762 5.9453 4.6993
6.1559 5.8950 5.7591 5.2173 4.9980
4.5010 4.7860 5.4382 4.8893 7.2940
5.5741 5.5139 5.8869 7.2756 5.8449
6.6439 4.5224 5.5028 4.5672 5.8718
6.0919 7.1912 6.4181 7.2248 8.4153
7.3199 5.1305 6.8719 5.2686 5.8055
5.3602 6.4120 6.0721 5.2740 7.2329
7.0912 7.0766 5.9750 6.6091 7.2135
4.9585 5.9042 5.9273 6.5762 5.3702
4.7654 6.4668 6.1983 4.3450 5.3261



From the samples, the mean can be
computed:

x =
∑100

i=1 xi
100

= 4.9970
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Accuracy of arbituary estimates θ̂

We can compute an estimate θ̂ of a parameter θ from an observation
sample x = (x1, x2, · · · , xn). But

how accurate is θ̂ compared to the real value θ ?

Our attention is focused on questions concerning the probability
distribution of θ̂. For instance we would like to know about:

its standard error

its confidence interval

its bias

etc.
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Standard error of θ̂

Definition

The standard error is the standard deviation of a statistic θ̂. As such, it
measures the precision of an estimate of the statistic of a population
distribution.

se(θ̂) =

√
varf [θ̂]

Standard error of x

We have:

Ef

[
(x − µf )

2
]
=

∑n
i=1 Ef

[
(xi − µf )

2
]

n2
=
σ2
f

n

Then
sef (x) = [varf (x)]

1/2 =
σf√
n
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Plug in estimate of the standard error

Suppose now that f is unknown and that only the random sample
x = (x1, · · · , xn) is known. As µf and σf are unknown, we can use the
previous formula to compute a plug-in estimate of the standard error.

Definition

The estimated standard error of the estimator θ̂ is defined as:

ŝe(θ̂) = sef̂ (θ̂) = [varf̂ (θ̂)]
1/2

Estimated standard error of x

ŝe(x) =
σ̂√
n
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Example on the mouse data

Data (Treatment group) 94; 197; 16; 38; 99; 141; 23

Data (Control group) 52; 104; 146; 10; 51; 30; 40; 27; 46

Table: The mouse data [Efron]. 16 mice assigned to a treatment group (7) or a
control group (9). Survival in days following a test surgery.

Did the treatment prolong survival ?
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Example on the mouse data

Mean and Standard error for both groups

x ŝe

Treatment 86.86 25.24

Control 56.22 14.14

Conclusion at first glance

It seems that mice having the treatment survive d = 86.86− 56.22 = 30.63
days more than the mice from the control group.
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Example on the mouse data

Stantard error of the difference d = xTreat − xCont
xTreat and xCont are independent, so the standard error of their difference

is ŝe(d) =
√
ŝe2

Treat + ŝe2
Cont = 28.93. We see that:

d

ŝe(d)
=

30.63

28.93
= 1.05

This shows that this is an insignificant result as it could easily have arised
by chance (i.e. if the test was reproduced, it is likely possible to measure
datasets giving d = 0!).
Therefore, we can not conclude with certainty that the treatment improves
the survival of the mice.
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Confidence interval for θ̂

Definition

Assuming that the estimator θ̂ is normally distributed with unknown
expectation θ and variance se2, then :

Prob{θ̂− z(1−α)se 6 θ 6 θ̂− z(α)se} = 1 − 2α

Therefore 1 − 2α % confidence interval for θ is [θ̂− z(1−α)se; θ̂− z(α)se]
Confidence limits are the lower and upper boundaries values of a
confidence interval. The confidence level is the probability value
100× (1 − 2α) % associated with a confidence interval.
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Confidence interval
The width of the confidence interval gives us some idea about how
uncertain we are about the unknown parameter. A very wide interval may
indicate that more data should be collected before anything very definite
can be said about the parameter.

percentile confidence level

α× 100 % (1 − 2α)× 100 % z(1−α)

10 80 1.28155
5 90 1.64485

2.5 95 1.95996
0.5 99 2.57583

0.25 99.5 2.80703
0.05 99.9 3.29053

Table: For a normal p.d.f z(α) = −z(1−α)

Figure: Density function N(0, 1).

18 / 133



Example Confidence interval

Confidence interval of the mean

Using the central limit theorem, the estimate x is following a normal

density function N
(
µf ,

σ2
f
n

)
. The 90% confidence interval is :

x ± 1.645
σf√
n
estimated by ± 1.645

σ̂√
n

confidence interval of the difference for the mouse data

The difference d in days of survival between the treatment group and the
control group has a estimated 90% confidence interval defined as:

d = 30.63± 1.645× 28.93 = 30.63± 47.5898
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Bias of θ̂

Definition

The Bias is the difference between the expectation of an estimator θ̂ and
the quantity θ being estimated:

Biasf (θ̂, θ) = Ef (θ̂) − θ

Bias of the mean x

we have:

Ef (x) = Ef

(∑n
i=1 xi
n

)
=

∑n
i=1 Ef (xi )

n
= µf

then:
Biasf (x ,µf ) = Ef (x) − µf = 0
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Bias of θ̂

A large bias is usually an undesirable aspect of an estimator’s
performance. Unbiased estimates (such Ef (θ̂) = θ) are interesting in
practice as they promote a nice feeling of scientific objectivity in the
estimation process.

Bias of σ̂2

σ̂2 = 1
n

∑n
i=1(xi − x)2 = 1

n

∑n
i=1((xi − µf ) + (µf − x))2

=
(

1
n

∑n
i=1(xi − µf )

2
)
− (x − µf )

2

The first term has an expected value of σ2
f and the second term has

expected value σ2
f /n. So the bias of σ̂2 is:

Biasf (σ̂
2,σ2

f ) = σ
2
f −

σ2
f

n
− σ2

f = −
σ2
f

n
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Bias of θ̂

Instead of using σ̂2 as an estimate of the variance, you should try to
choose an unbiased estimate.

Bias of σ2

Let define:

σ2 =
1

n − 1

n∑
i=1

(xi − x)2

then by computing its bias:

Biasf (σ
2,σ2

f ) = Ef (σ
2) − σ2

f

= 0

σ is an unbiased estimator of the standard deviation.
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Summary

Population density function f (·) and empirical density function f̂ (·),

Plug-in principle: relation between θ and its estimate θ̂

Standard error and confidence interval as a measure of accuracy of
the estimate θ̂

Accuracy of estimate is important to draw conclusions (e.g. mouse
example).

se has an explicit expression for the mean x
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Open problems

f is generally unknown!

Using the Plug-in principle, with more samples {x} drawn from f , we
could estimate ŝe or the bias.

But the only information available is one sample x = (x1, ·, xn) drawn
from f !

Most of all, explicit expression of se of the estimate is not easy to get
in most cases!
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Introduction

We want to assess the accuracy (bias, standard error, etc.) of an arbitrary
estimate θ̂ knowing only one sample x = (x1, · · · , xn) drawn from an
unknown population density function f .

We propose here one way, called Bootstrap, to do it using computer
intensive techniques for resampling.

Bootstrap is a data based simulation method for statistical inference.
The basic idea of bootstrap is to use the sample data to compute a
statistic and to estimate its sampling distribution, without any model
assumption.

No theoretical calculations of standard errors needed so we don’t care
how mathematically complex the estimator θ̂ can be!
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Introduction

The (non-parametric) bootstrap method is an application of the
plug-in principle. By non-parametric, we mean that only x is known
(observed) and no prior knowledge on the population density function
f is available.

Originally, the Bootstrap was introduced to compute standard error of
an arbitrary estimator by Efron (1979) and to-date the basic idea
remains the same.

The term bootstrap derives from the phrase to pull oneself up by
one’s bootstrap (Adventures of Baron Munchausen, by Rudolph Erich
Raspe). The Baron had fallen to the bottom of a deep lake. Just
when it looked like all was lost, he thought to pick himself up by his
own bootstraps.
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Bootstrap samples and replications

Definition

A bootstrap sample x∗ = (x∗1 , x∗2 , · · · , x∗n ) is obtained by randomly
sampling n times, with replacement, from the original data points
x = (x1, x2, · · · , xn).

Considering a sample x = (x1, x2, x3, x4, x5), some bootstrap samples can
be:

x∗(1) = (x2, x3, x5, x4, x5)

x∗(2) = (x1, x3, x1, x4, x5)
etc.

Definition

With each bootstrap sample x∗(1) to x∗(B), we can compute a bootstrap
replication θ̂∗(b) = s(x∗(b)) using the plug-in principle.
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How to compute Bootstrap samples

Repeat B times:

1 A random number device selects integers i1, · · · , in each of which
equals any value between 1 and n with probability 1

n .

2 Then compute x∗ = (xi1 , · · · , xin).

Some matlab code available on the web

See BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D.
Robert Iskander,
http://www.csp.curtin.edu.au/downloads/bootstrap toolbox.html
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How many values are left out of a bootstrap resample ?

Given a sample x = (x1, x2, · · · , xn) and assuming that all xi are different,
the probability that a particular value xi is left out of a resample
x∗ = (x∗1 , x∗2 , · · · , x∗n ) is:

P(x∗j 6= xi , 1 6 j 6 n) =

(
1 −

1

n

)n

since P(x∗j = xi ) =
1
n . When n is large, the probability

(
1 − 1

n

)n
converges

to e−1 ≈ 0.37.
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The Bootstrap algorithm for Estimating standard errors

1 Select B independent bootstrap samples x∗(1), x∗(2), · · · , x∗(B) drawn
from x

2 Evaluate the bootstrap replications:

θ̂∗(b) = s(x∗(b)), ∀b ∈ {1, · · · ,B}

3 Estimate the standard error sef (θ̂) by the standard deviation of the B
replications:

ŝeB =

[∑B
b=1[θ̂

∗(b) − θ̂∗(·)]2

B − 1

] 1
2

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)

B
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Bootstrap estimate of the standard Error

Example A

From the distribution f : f (x) = 0.2 N(µ=1,σ=2) + 0.8 N(µ=6,σ=1). We
draw the sample x = (x1, · · · , x100) :

x =



7.0411 4.8397 5.3156 6.7719 7.0616
5.2546 7.3937 4.3376 4.4010 5.1724
7.4199 5.3677 6.7028 6.2003 7.5707
4.1230 3.8914 5.2323 5.5942 7.1479
3.6790 0.3509 1.4197 1.7585 2.4476
−3.8635 2.5731 −0.7367 0.5627 1.6379
−0.1864 2.7004 2.1487 2.3513 1.4833
−1.0138 4.9794 0.1518 2.8683 1.6269
6.9523 5.3073 4.7191 5.4374 4.6108
6.5975 6.3495 7.2762 5.9453 4.6993
6.1559 5.8950 5.7591 5.2173 4.9980
4.5010 4.7860 5.4382 4.8893 7.2940
5.5741 5.5139 5.8869 7.2756 5.8449
6.6439 4.5224 5.5028 4.5672 5.8718
6.0919 7.1912 6.4181 7.2248 8.4153
7.3199 5.1305 6.8719 5.2686 5.8055
5.3602 6.4120 6.0721 5.2740 7.2329
7.0912 7.0766 5.9750 6.6091 7.2135
4.9585 5.9042 5.9273 6.5762 5.3702
4.7654 6.4668 6.1983 4.3450 5.3261


We have µf = 5 and x = 4.9970.
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Bootstrap estimate of the standard Error

Example A

1 B = 1000 bootstrap samples {x∗(b)}

2 B = 1000 replications {x∗(b)}

3 Bootstrap estimate of the standard error:

ŝeB=1000 =

[∑1000
b=1 [x

∗(b) − x∗(·)]2

1000 − 1

] 1
2

= 0.2212

where x∗(·) = 5.0007. This is to compare with ŝe(x) = σ̂√
n
= 0.22.
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Distribution of θ̂

When enough bootstrap resamples have been generated, not only the
standard error but any aspect of the distribution of the estimator θ̂ = t(f̂ )
could be estimated. One can draw a histogram of the distribution of θ̂ by
using the observed θ̂∗(b), b = 1, · · · ,B.

Example A

0 2 4 5 6 8 10
0

50

100

150

200

250

300

350

Figure: Histogram of the replications {x∗(b)}b=1···B .
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Bootstrap estimate of the standard error

Definition

The ideal bootstrap estimate sef̂ (θ̂
∗) is defined as:

lim
B→∞ ŝeB = sef̂ (θ̂

∗)

sef̂ (θ̂
∗) is called a non-parametric bootstrap estimate of the standard error.
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Bootstrap estimate of the standard Error

How many B in practice ?

you may want to limit the computation time. In practice, you get a good
estimation of the standard error for B in between 50 and 200.

Example A

B 10 20 50 100 500 1000 10000

ŝeB 0.1386 0.2188 0.2245 0.2142 0.2248 0.2212 0.2187

Table: Bootstrap standard error w.r.t. the number B of bootstrap samples.
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Bootstrap estimate of bias

Definition

The bootstrap estimate of bias is defined to be the estimate:

Biasf̂ (θ̂) = Ef̂ [s(x
∗)] − t(f̂ )

= θ̂∗(·) − θ̂

Example A

B 10 20 50 100 500 1000 10000
Ef̂ (x

∗) 5.0587 4.9551 5.0244 4.9883 4.9945 5.0035 4.9996

B̂ias 0.0617 -0.0419 0.0274 -0.0087 -0.0025 0.0064 0.0025

Table: B̂ias of x∗ (x = 4.997 and µf = 5).
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Bootstrap estimate of bias

1 B independent bootstrap samples x∗(1), x∗(2), · · · , x∗(B) drawn from x

2 Evaluate the bootstrap replications:

θ̂∗(b) = s(x∗(b)), ∀b ∈ {1, · · · ,B}

3 Approximate the bootstrap expectation :

θ̂∗(·) = 1

B

B∑
b=1

θ̂∗(b) =
1

B

B∑
b=1

s(x∗(b))

4 the bootstrap estimate of bias based on B replications is:

B̂iasB = θ̂∗(·) − θ̂
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Confidence interval

Definition

Using the bootstrap estimation of the standard error, the 100(1 − 2α)%
confidence interval is:

θ = θ̂± z(1−α) · ŝeB

Definition

If the bias in not null, the bias corrected confidence interval is defined by:

θ = (θ̂− B̂iasB)± z(1−α) · ŝeB
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Can the bootstrap answer other questions?

The mouse data

Data (Treatment group) 94; 197; 16; 38; 99; 141; 23

Data (Control group) 52; 104; 146; 10; 51; 30; 40; 27; 46

Table: The mouse data [Efron]. 16 mice divided assigned to a treatment group
(7) or a control group (9). Survival in days following a test surgery. Did the
treatment prolong survival ?
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Can the bootstrap answer other questions?

The mouse data

Remember in the first lecture, we compute d = xTreat − xCont = 30.63
with a standard error ŝe(d) = 28.93. The ratio was d/ŝe(d) = 1.05
(an insignificant result as measuring d = 0 is likely possible).

Using bootstrap method

1 B bootstrap samples x
∗(b)
Treat = (x

∗(b)
Treat 1, · · · , x

∗(b)
Treat 7) and

x
∗(b)
Cont = (x

∗(b)
Cont 1, · · · , x

∗(b)
Cont 9), ∀1 6 b 6 B

2 B bootstrap replications are computed: d∗(b) = x
∗(b)
Treat − x

∗(b)
Cont

3 The bootstrap standard error is computed for B = 1400:
ŝeB=1400 = 26.85.

4 The ratio is d/ŝe1400(d) = 1.14.

This is still not a significant result.
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The Law school example

School 1 2 3 4 5 6 7 8

LSAT (X) 576 635 558 578 666 580 555 661
GPA (Y) 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43

School 9 10 11 12 13 14 15

LSAT (X) 651 605 653 575 545 572 594
GPA (Y) 3.36 3.13 3.12 2.74 2.76 2.88 2.96

Table: Results of law schools admission practice for the LSAT and GPA tests. It is
believed that these scores are highly correlated. Compute the correlation and its
standard error.
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Correlation

The correlation is defined :

corr(X ,Y ) =
E[(X − E(X )) · (Y − E(Y ))]

(E[(X − E(X ))2] · E[(Y − E(Y ))2])1/2

Its typical estimator is:

ĉorr(x, y) =

∑n
i=1 xi yi − n x y

[
∑n

i=1 x
2
i − nx2]1/2 · [

∑n
i=1 y

2
i − ny2]1/2
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The Law school example

The estimated correlation is ĉorr(x, y) = .7764 between LSAT and
GPA.

Non-parametric Bootstrap estimate of the standard error

B 25 50 100 200 400 800 1600 3200

ŝeB .140 .142 .151 .143 .141 .137 .133 .132

Table: Bootstrap estimate of standard error for ĉorr(x, y) = .776.

The standard error stabilizes to sef̂ (ĉorr) ≈ .132.
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The Law school example: Conclusion

The textbook formula for the correlation coefficient is:

ŝe(ĉorr) = (1 − ĉorr2)/
√
n − 3

With ĉorr = 0.7764, the standard error is ŝe(ĉorr) = 0.1147.

The estimated non-parametric bootstrap standard error seB=3200 is
0.132.
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Summary

Re-sampling of x to compute bootstrap samples x∗

Computation of bootstrap replication of the estimator θ̂∗(b) for
b = 1, · · · ,B

From replications, standard error ŝeB , the bias B̂iasB and the
confidence interval.

Non-parametric bootstrap estimations (no prior on f ).
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Non-Parametric Bootstrap

Real World Bootstrap World

f → x ⇒ f̂ → x∗

↓ ↓

θ̂ θ̂∗

Figure: Unknown probability model f gives observed data x and we wish to know
the accuracy of the statistic θ̂ = s(x) for estimating the parameter of interest
θ = t(f ). No prior information is available on f , therefore f̂ is estimated from x
as the empirical distribution function. Accuracy is inferred from observed
variability of bootstrap replication θ̂∗ = s(x∗).
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Convergence of the bootstrap estimates

Example A

f (x) = 0.2 N(µ=1,σ=2) + 0.8 N(µ=6,σ=1)  x = (x1, · · · , x100).

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B̂ias ŝeB

Figure: Bias and standard error bootstrap estimates w.r.t. B (4 experiments have
been run).
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Example of non-parametric bootstrap failure

Example B

Considering a sample x drawn from a uniform distribution f = U(0, θ = 1),
the statistics of interest is θ̂ = max{x1, · · · , xn}, and
x=(0.5729,0.1873,0.5984,0.2883,0.8722, 0.4320,0.4896,0.7106,0.2754,0.7637).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

Figure: Histogram of the nonparametric bootstrap

replications θ̂∗ with n = 10, B = 1000, θ̂ = 0.8722. The
maximum peak is at θ̂ = 0.8722 with a probability of
P(θ̂ ∈ x∗) = 0.6560 ≈ 1 − (1 − 1/n)n = 0.6513.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ    
^ 

Figure: Theoretical results (extreme values) says that

P(θ̂∗) = n
(θ̂∗)n−1

θ̂n .
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Example of non-parametric bootstrap failure

Example B

What went wrong in this example ?

The empirical density function f̂ is not a good approximation of the
true distribution f = U(0, θ).

Either parametric knowledge of f or some smoothing of f̂ is needed
to rectify matters.

52 / 133



Convergence of the bootstrap estimates

With x = (x1, · · · , xn), n i.i.d. values, it is required:

1 Convergence of f̂ to f for n→∞ (Glivenko-Cantelli lemma)

2 Estimate θ̂ = t(f̂ ) is the plug-in estimate of θ = t(f )

3 Smoothness condition on the functional. E.g
I Smooth functionals: means, variance, etc.
I Not smooth: extreme order statistics (minimum, maximum)
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Parametric Bootstrap

Real World Estimation Bootstrap World

Prior : f ' N(µ,σ)→ x ⇒ (x , σ̂) f̂ ' N(x , σ̂)→ x∗

↓ ↓

θ̂ θ̂∗

Figure: Example of parametric Bootstrap. f is a normal distribution of unknown
parameters (µ,σ). From the observed data x drawn from f , an estimation of the
parameters is performed giving (x , σ̂). f̂ is then modelled by a normal distribution
N(x , σ̂), from which bootstrap replications can be drawn x∗. Accuracy is inferred
from observed variability of bootstrap replication θ̂∗ = s(x∗).
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Example with extreme value

Example B

We draw B = 1000 bootstrap
replication of θ̂∗ = max{x∗} using
the parametric assumption
U(0, θ̂).
The extreme value distribution is
P(θ̂∗) = n (θ̂∗)n−1

θ̂n
.
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Figure: Histogram of the parametric
bootstrap replications θ̂∗ with
n = 10, B = 1000, θ̂ = 0.8722.
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The Law school example

School 1 2 3 4 5 6 7 8

LSAT (X) 576 635 558 578 666 580 555 661
GPA (Y) 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43

School 9 10 11 12 13 14 15

LSAT (X) 651 605 653 575 545 572 594
GPA (Y) 3.36 3.13 3.12 2.74 2.76 2.88 2.96

Table: Results of law schools admission practice for the LSAT and GPA tests. It is
believed that these scores are highly correlated. Compute the correlation and its
standard error.
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Correlation

The correlation is defined :

corr(X ,Y ) =
E[(X − E(X )) · (Y − E(Y ))]

(E[(X − E(X ))2] · E[(Y − E(Y ))2])1/2

Its typical estimator is:

ĉorr(x, y) =

∑n
i=1 xi yi − n x y

[
∑n

i=1 x
2
i − nx2]1/2 · [

∑n
i=1 y

2
i − ny2]1/2
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The Law school example

Parametric Bootstrap approach

Assuming that f is a bivariate
normale distribution, f̂norm is
estimated by computing the mean
z = (x , y) and the covariance matrix
Σ̂ from the data.
Then B samples (x, y)∗ can be drawn
from f̂par and the bootstrap estimate
of the correlation coefficient can be
performed.
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The Law school example: Parametric Approach

Prior model

Assumption. f is a bivariate normal density function of the form:

f (x , y) =
exp

[
−

(z−µµµzf )
TΣ−1(z−µµµzf )

2

]
(2π)| det(Σ)|1/2

with z =

(
x
y

)
Problem. The parameters, mean µµµzf = (µxf ,µyf ) and the covariance
matrix Σ, are unknown.
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The Law school example: Parametric Approach

Estimate of the parametric p.d.f.

The parametric p.d.f. is estimated by:

f̂par (x , y) =

exp

[
−

(z−z)TΣ
−1

(z−z)
2

]
(2π)| det(Σ)|1/2

Means are z = (x =
∑n

i=1 xi
n , y =

∑n
i=1 yi
n ). The covariance matrix is defined

as:

Σ =
1

n − 1

 ∑n
i=1(xi − x)2

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)(yi − y)
∑n

i=1(yi − y)2


The mean is z = (x = 600.3, y = 3.1) and Σ =

[
1747 0.0079

0.0079 0.0001

]
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Parametric Bootstrap estimate of standard error

1 Using the prior assumption and the available observation
x = (x1, x2, · · · , xn), estimate f̂par

2 Instead of sampling with replacement from the data x, draw B
samples x∗(b) of size n from f̂par

3 Evaluate the bootstrap replications:

θ̂∗(b) = s(x∗(b)), ∀b ∈ {1, · · · ,B}

4 Estimate the standard error sef (θ̂) by the standard deviation of the B
replications:

ŝeB =

[∑B
b=1[θ̂

∗(b) − θ̂∗(·)]2

B − 1

] 1
2

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)

B .
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Parametric Bootstrap estimate of the bias

1 Using the prior assumption and the available observation
x = (x1, x2, · · · , xn), estimate f̂par

2 Instead of sampling with replacement from the data x, draw B
samples x∗(b) of size n from f̂par

3 Evaluate the bootstrap replications:

θ̂∗(b) = s(x∗(b)), ∀b ∈ {1, · · · ,B}

4 Estimate the bias:
B̂iasB = θ̂∗(·) − θ̂

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)

B .
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Resampling and Monte Carlo Simulation

In resampling, one could do all possible combinations, but it would be
too time-consuming and computing-intensive.

The alternative is Monte Carlo sampling, which restricts the
resampling to a certain number. It is used in the computation of the
bootstrap samples in the nonparametric case when a random index
(i1, · · · , in) is simulated from the uniform distribution [1; n]
(x∗ = (xi1 , · · · , xi1)).

The data could be totally hypothetical in Monte Carlo simulation,
while in the resampling, the simulation is based upon some real
observation x = (x1, · · · , xn).

In the parametric case, the bootstrap samples from f̂par are computed
using Monte Carlo methods and are not anymore resamples from x.
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The Law school example: Parametric Bootstrap

For B = 3200 bootstrap replications,
we compute ĉorr∗(·) = 0.7661 and
the parametric bootstrap standard
error 0.1169.
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Figure: Histogram of 3200 parametric
bootstrap replication of corr
ĉorr(x∗, y∗).
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The Law school example: Conclusion

The textbook formula for the correlation coefficient is:

sef̂ = (1 − ĉorr2)/
√
n − 3

With ĉorr(x, y) = 0.7764, the standard error is sef = 0.1147.

The non-parametric bootstrap standard error for B = 3200 is 0.132.

The parametric bootstrap standard error for B = 3200 is 0.1169.
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Parametric and nonparametric bootstrap estimates

The nonparametric approach leads to a finite number of possible
replications θ̂∗(b). In fact considering n distinct values in
x = (x1, · · · , xn), the maximum number of different bootstrap
samples (and replications) is 1:

Bmax =

(
2n − 1
n − 1

)
=

(2n − 1)!

n!(n − 1)!

The parametric approach has an unlimited number of different
bootstrap samples and replications.

1n = 11, Bmax = 652716: big enough to minimize the effect of the discreteness in the
nonparametric approach.
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When might the (parametric and non parametric)
bootstrap fail?

Bootstrap might fail when:

incomplete data (missing data) : incomplete observation x

dependent data (e.g. correlated time series) x = (x1, · · · , xn)
dependent

dirty data (outliers) : noisy observation x

For a critical view on bootstrap, see the publication Exploring the limits of
bootstrap edited by Le Page and Billard 1990 (ISBN: 0-471-53631-8).
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Conclusion

In parametric bootstrap, f̂par is not anymore the empirical density
function.

If the prior information on f is accurate, then f̂par estimates better f
than the empirical p.d.f.. In this case the parametric bootstrap gives
better estimation for the standard errors.

Most of the time, the point of making assumptions is to derive the
textbook formulas.
All models are wrong, but some are useful- G.E.P. Box, 1979.

On the other hand, non-parametric bootstrap allows the computation
of accurate standard errors (in many cases) without making any prior
assumption.
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Conclusion

In non-parametric mode, the bootstrap method relieves the analyst
from choosing a parametric assumption about the form of the
underlying density function f .

In both case, bootstrap can provide answers for problem for which no
textbook formulae exists.
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Introduction to resampling methods

Definitions and Problems

Non-Parametric Bootstrap

Parametric Bootstrap

Jackknife

Permutation tests

Cross-validation
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Introduction

The bootstrap method is not always the best one. One main reason is that
the bootstrap samples are generated from f̂ and not from f . Can we find
samples/resamples exactly generated from f ?

If we look for samples of size n, then the answer is no!

If we look for samples of size m (m < n), then we can indeed find
(re)samples of size m exactly generated from f simply by looking at
different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling
without replacement from observations x1, · · · , xn to get (re)samples (now
called subsamples) of size m. This leads us to subsampling and the
jackknife.
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Jackknife

The jackknife has been proposed by Quenouille in mid 1950’s.

In fact, the jackknife predates the bootstrap.

The jackknife (with m = n − 1) is less computer-intensive than the
bootstrap.

Jackknife describes a swiss penknife, easy to carry around. By
analogy, Tukey (1958) coined the term in statistics as a general
approach for testing hypotheses and calculating confidence intervals.
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Jackknife samples

Definition

The Jackknife samples are computed by leaving out one observation xi
from x = (x1, x2, · · · , xn) at a time:

x(i) = (x1, x2, · · · , xi−1, xi+1, · · · , xn)

The dimension of the jackknife sample x(i) is m = n − 1

n different Jackknife samples : {x(i)}i=1···n.

No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander,
http://www.csp.curtin.edu.au/downloads/bootstrap toolbox.html
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Jackknife replications

Definition

The ith jackknife replication θ̂(i) of the statistic θ̂ = s(x) is:

θ̂(i) = s(x(i)), ∀i = 1, · · · , n

Jackknife replication of the mean

s(x(i)) = 1
n−1

∑
j 6=i xj

=
(nx−xi)
n−1

= x(i)
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Jackknife estimation of the standard error

1 Compute the n jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the n jackknife replications θ̂(i) = s(x(i)).

3 The jackknife estimate of the standard error is defined by:

ŝejack =

[
n − 1

n

n∑
i=1

(θ̂(·) − θ̂(i))
2

]1/2

where θ̂(·) =
1
n

∑n
i=1 θ̂(i).
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Jackknife estimation of the standard error of the mean

For θ̂ = x , it is easy to show that:
x(i) =

nx−xi
n−1

x(·) = 1
n

∑n
i=1 x(i) = x

Therefore:

ŝejack =
{∑n

i=1
(xi−x)2

(n−1)n

}1/2

= σ√
n

where σ is the unbiased variance.
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Jackknife estimation of the standard error

The factor n−1
n is much larger than 1

B−1 used in bootstrap.

Intuitively this inflation factor is needed because jackknife deviation
(θ̂(i) − θ̂(·))

2 tend to be smaller than the bootstrap (θ̂∗(b) − θ̂∗(·))2

(the jackknife sample is more similar to the original data x than the
bootstrap).

In fact, the factor n−1
n is derived by considering the special case

θ̂ = x (somewhat arbitrary convention).
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Comparison of Jackknife and Bootstrap on an example

Example A: θ̂ = x

f (x) = 0.2 N(µ=1,σ=2) + 0.8 N(µ=6,σ=1)  x = (x1, · · · , x100).

Bootstrap standard error and bias w.r.t. the number B of bootstrap
samples:

B 10 20 50 100 500 1000 10000

ŝeB 0.1386 0.2188 0.2245 0.2142 0.2248 0.2212 0.2187

B̂iasB 0.0617 -0.0419 0.0274 -0.0087 -0.0025 0.0064 0.0025

Jackknife: ŝejack = 0.2207 and B̂iasjack = 0

Using textbook formulas: sef̂ = σ̂√
n
= 0.2196 ( σ√

n
= 0.2207).
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Jackknife estimation of the bias

1 Compute the n jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the n jackknife replications θ̂(i) = s(x(i)).

3 The jackknife estimation of the bias is defined as:

B̂iasjack = (n − 1)(θ̂(·) − θ̂)

where θ̂(·) =
1
n

∑n
i=1 θ̂(i).
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Jackknife estimation of the bias

Note the inflation factor (n − 1) (compared to the bootstrap bias
estimate).

θ̂ = x is unbiased so the correspondence is done considering the

plug-in estimate of the variance σ̂2 =
∑n

i=1(xi−x)2

n .

The jackknife estimate of the bias for the plug-in estimate of the
variance is then:

B̂iasjack =
−σ

2

n
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Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {θ̂∗(b)}b∈{1,··· ,B=1000} (left), and

the jackknife replications {θ̂(i)}i∈{1,··· ,n=100} (right).
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Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {θ̂∗(b)}b∈{1,··· ,B=1000} (left), and

the inflated jackknife replications {
√
n − 1(θ̂(i) − θ̂(·)) + θ̂(·)}i∈{1,··· ,n=100} (right).
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Relationship between jackknife and bootstrap

When n is small, it is easier (faster) to compute the n jackknife
replications.

However the jackknife uses less information (less samples) than the
bootstrap.

In fact, the jackknife is an approximation to the bootstrap!
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Relationship between jackknife and bootstrap

Considering a linear statistic :

θ̂ = s(x) = µ+ 1
n

∑n
i=1 α(xi )

= µ+ 1
n

∑n
i=1 αi

Mean θ̂ = x

The mean is linear µ = 0 and α(xi ) = αi = xi , ∀i ∈ {1, ·, n}.

There is no loss of information in using the jackknife to compute the
standard error (compared to the bootstrap) for a linear statistic.
Indeed the knowledge of the n jackknife replications {θ̂(i)}, gives the

value of θ̂ for any bootstrap data set.

For non-linear statistics, the jackknife makes a linear approximation to
the bootstrap for the standard error.
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Relationship between jackknife and bootstrap

Considering a quadratic statistic

θ̂ = s(x) = µ+ 1
n

∑n
i=1 α(xi ) +

1
n2β(xi , xj)

Variance θ̂ = σ̂2

σ̂2 = 1
n

∑n
i=1(xi − x)2 is a quadratic statistic.

Again the knowledge of the n jackknife replications {s(θ̂(i))}, gives

the value of θ̂ for any bootstrap data set. The jackknife and
bootstrap estimates of the bias agree for quadratic statistics.
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Relationship between jackknife and bootstrap

The Law school example: θ̂ = ĉorr(x, y).

The correlation is a non linear statistic.

From B=3200 bootstrap replications, ŝeB=3200 = 0.132.

From n = 15 jackknife replications, ŝejack = 0.1425.

Textbook formula: sef̂ = (1 − ĉorr2)/
√
n − 3 = 0.1147
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Failure of the jackknife

The jackknife can fail if the estimate θ̂ is not smooth (i.e. a small change
in the data can cause a large change in the statistic). A simple
non-smooth statistic is the median.

On the mouse data

Compute the jackknife replications of the median
xCont = (10, 27, 31, 40, 46, 50, 52, 104, 146) (Control group data).

You should find 48,48,48,48,45,43,43,43,43 a.

Three different values appears as a consequence of a lack of
smoothness of the medianb.

aThe median of an even number of data points is the average of the middle
2 values.

bthe median is not a differentiable function of x .
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Delete-d Jackknife samples

Definition

The delete-d Jackknife subsamples are computed by leaving out d
observations from x at a time.

The dimension of the subsample is n − d .

The number of possible subsamples now rises

(
n
d

)
= n!

d!(n−d)! .

Choice:
√
n < d < n
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Delete-d jackknife

1 Compute all

(
n
d

)
d-jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the jackknife replications θ̂(i) = s(x(i)).

3 Estimation of the standard error (when n = r · d):

ŝed−jack =


r(
n
d

)∑
i

(θ̂(i) − θ̂(·))2


1/2

where θ̂(·) =
∑

i θ̂(i) n
d

 .
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Concluding remarks

The inconsistency of the jackknife subsamples with non-smooth
statistics can be fixed using delete-d jackknife subsamples.

The subsamples (jackknife or delete-d jackknife) are actually samples
(of smaller size) from the true distribution f whereas resamples
(bootstrap) are samples from f̂ .
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Summary

Bias and standard error estimates have been introduced using
jackknife replications.

The Jackknife standard error estimate is a linear approximation of the
bootstrap standard error.

The Jackknife bias estimate is a quadratic approximation of the
bootstrap bias.

Using smaller subsamples (delete-d jackknife) can improve for
non-smooth statistics such as the median.

91 / 133



Introduction to resampling methods

Definitions and Problems

Non-Parametric Bootstrap

Parametric Bootstrap

Jackknife

Permutation tests

Cross-validation
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So far

The resampling methods are:

Bootstrap resampling: generate samples with the same size n as x
with replacement.

Jackknife subsampling : generate samples with a smaller size than x
without replacement.

Used for:

Compute accuracy measures (standard error, bias, etc.) of a statistic
θ̂ from one set x = (x1, · · · , xn).

Compare two sets of observations: the example of the mouse data
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Example on the mouse data

Data (Treatment group) 94; 197; 16; 38; 99; 141; 23

Data (Control group) 52; 104; 146; 10; 51; 30; 40; 27; 46

Table: The mouse data [Efron]. 16 mice assigned to a treatment group (7) or a
control group (9). Survival in days following a test surgery.

Did the treatment prolong survival ?
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Example on the mouse data

1 Compute B bootstrap samples for each group

I x
∗(b)
Treat = (x

∗(b)
Treat 1, · · · , x

∗(b)
Treat 7)

I x
∗(b)
Cont = (x

∗(b)
Cont 1, · · · , x

∗(b)
Cont 9)

2 B bootstrap replications are computed: θ̂∗(b) = x
∗(b)
Treat − x

∗(b)
Cont

3 you can approximate the p.d.f. of the replications by a histogram.
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Example on the mouse data

Figure: P.d.f. P(θ̂∗) (histogram) of the replication θ̂∗ ( θ̂ = 30.63 and
ŝeB = 26.85).
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Introduction

Two sample problem : definitions

Parametric solution

Non parametric solution:

I permutation test

I randomization test

I bootstrap test
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The two sample problem

Two independent random sample are observed xa and xb drawn from
possibly different probability density functions:

fa  xa = {xa,1, · · · , xa,n}

fb  xb = {xb,1, · · · , xb,m}

Definition

The null hypothesis H0 assumes that there is no difference in between the
density function fa = fb.
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Hypothesis test and Achieved significance level (ASL)

Definition

A hypothesis test is a way of deciding whether or not the data decisively
reject the hypothesis H0.

Definition

The achieved significance level of the test (ASL) is defined as:

ASL = PPP(θ̂∗ > θ̂|H0)

=
∫+∞
θ̂

P(θ̂∗|H0) d θ̂
∗

The smaller ASL, the stronger is the evidence of H0 false. The notation
star differentiates between an hypothetical value θ̂∗ generated according to
H0, and the actual observation θ̂.
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Parametric test

A tradionnal way is to consider some hypotheses: fa ∼ N(µa,σ2) and
fb ∼ N(µb,σ2), and the null hypothesis becomes µa = µb.

Under H0, the statistic θ̂ = xa − xb can be modelled as a normal
distribution with mean 0 and variance σ2

θ̂
= σ2( 1

m + 1
n ).

The ASL is then computed:

ASL =

∫+∞
θ̂

e

−(θ̂∗−θ̂)2

2σ2
θ̂

√
2πσθ̂

d θ̂∗
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Parametric test

σ is unknown and has to be estimated from the data:

σ2 =

∑n
i=1(xai − xa)

2 +
∑m

i=1(xbi − xb)
2

m + n − 2

For the mouse data ASL = .131 : the null hypothesis cannot be
rejected.

However, this (parametric) method relies on the hypotheses made
while calculating the ASL.
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Permutation tests

Permutation tests are a computer-intensive statistical technique that
predates computers.

This idea was introduced by R.A. Fisher in the 1930’s.

The main application of permutation tests is the two-sample problem.
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Computation of the two sample permutation test statistic

Notation m number of values in observation xTreat , n number of values in
observation xCont .
If H0 is true, then:

1 We can combine the values from both observations in one of size
m + n = N: x = {xTreat , xCont }.

2 Take a subsample x∗Treat from x of size m. The remaining n values
constitute the subsample x∗Cont .

3 Compute the replication x∗Treat and x∗Cont on x∗Treat and x∗Cont
respectively.

4 Compute the replication of the difference θ̂∗ = x∗Treat − x∗Cont .
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Example on the mouse data

Figure: Histogram of the permutation replications P(θ̂∗|H0). ASL is the red
surface (ASLperm = 0.14).

If the original difference θ̂ = d = xTreat − xCont falls outside the 95% of the
distribution of the permutation replication (i.e. ASLperm < 0.05), then the null
hypothesis is rejected.
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Computation of the two sample permutation test statistic

1 x = {xa; xb} of size n +m = N.

2 Compute all :

I

(
N
n

)
permutation samples x∗. Select the n first values to define x∗a

and the last m ones to define x∗b

I

(
N
n

)
replications θ̂∗(b) = x∗a − x∗b

3 Approximate ASLperm by:

ÂSLperm =
#{θ̂∗ > θ̂}(

N
n

)
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Remark on the permutation test

The histogram of the permutation replications θ̂∗ approximates
P(θ̂∗|H0).

The resamples are not really permutations but more combinations.(
N
n

)
can be huge so in practice, ASLperm is approximated by

Monte Carlo methods.
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Computation of the two sample randomization test statistic

1 x = {xa; xb} of size n +m = N.

2 Compute B times:
I Randomly selected permutation samples x∗. Select the n first values to

define x∗a and the last m ones to define x∗b

I Compute the replications θ̂∗(b) = x∗a − x∗b

3 Approximate ASLperm by:

ÂSLperm =
#{θ̂∗ > θ̂}

B
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Remarks

Figure: Histograms of the bootstrap replications P(θ̂∗) (blue), and the
permutation replications P(θ̂∗|H0) (red).
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Remarks

Permutation replications are computed without replacement.

The distribution of permutation replications approximates P(θ∗|H0).

The bootstrap replications presented in the introduction are
computed on resamples with replacements. The distribution of those
bootstrap replications defines P(θ∗).

Is there a way to get P(θ∗|H0) using a bootstrap method ?
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Computation of the two sample bootstrap test statistics

1 x = {xa; xb} of size n +m = N.

2 Compute B times:
I Bootstrap samples from x. Select the n first values to define x∗a and the

last m ones to define x∗b.

I Compute the replications θ̂∗(b) = x∗a − x∗b
3 Approximate ASLboot by:

ÂSLboot =
#{θ̂∗(b) > θ̂}

B
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Example on the mouse data

Figure: Histogram of the bootstrap replications in the two sample test P(θ̂∗|H0).
ASL is the green surface (ASLboot = 0.13).
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Relationship between the permutation test and the
bootstrap test

Very similar results in between the permutation test and the
bootstrap test.

ASLperm is the exact probability.

ASLboot is not an exact probability but is guaranteed to be accurate
as an estimate of the ASL, as the sample size goes to infinity.

In the two-sample problem, the permutation test can only test the
null hypothesis fa = fb while the bootstrap can perform other
hypothesis testing.

112 / 133



Summary

Hypothesis testing has been introduced, involving the computation of
a probability ASL

Permutation, Randomization and bootstrap tests have been
introduced as alternative to parametric tests.

Again the main difference in between those nonparametric tests, is
the way the resamples are computed (with or without replacements).

113 / 133



Introduction to resampling methods

Definitions and Problems

Non-Parametric Bootstrap

Parametric Bootstrap

Jackknife

Permutation tests

Cross-validation
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Type of resampling

Randomization exact test (or permutation test) developed by R. A.
Fisher (1935/1960), the founder of classical statistical testing.

Jackknife invented by Maurice Quenouille (1949) and later developed
by John W. Tukey (1958).

Bootstrap invented by Bradley Efron (1979, 1981, 1982) and further
developed by Efron and Tibshirani (1993).

Cross-validation
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Resampling

Definition

Resampling means that the inference is based upon repeated sampling
within the same sample. Resampling is tied to the Monte Carlo simulation.
Some may distinguish both in that resampling consider all possible
replications (permutation test, jackknife) and the Monte-Carlo sampling
restrict the resampling to a certain number of replications (bootstrap,
randomisation test).

Another difference in between resampling methods is the nature of the
resamples: computed with or without replacement.
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Introduction to cross-validation

Cross-validation was proposed by Kurtz (1948-simple
cross-validation) , extended by Mosier (1951-double cross-validation)
and by Krus and Fuller (1982- multicross-validation).

The original objective of cross-validation is to verify replicability of
results.

Similarly with hypothesis testing, the goal is to find out if the result is
replicable or just a matter of random.
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prediction error

Definition

A prediction error measures how well a model predicts the response value
of a future observation. It is often used for model selection.
It is defined as:

the expected square difference between a future response and the
prediction from the model in regression models:

E(y − ŷ)

the probability of incorrect classification in classification problem:

PPP(y 6= ŷ)
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The linear regression model

We have a set of (2-dimensional) points z = {(xi , yi )}i=1,··· ,n.

An unknow relation is linking yi to xi such as:

yi = β(xi ) + εi

=
∑p

q=0 βq xqi + εi

The error terms εi are assumed to be random sample from a random
distribution having expectation 0 and variance σ2.
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The Model Selection Problem
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Figure: Exemple of data set ( In this example (β0,β1,β2) = (1, 3, 0), σ = 3 and
n = 10).
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The Model Selection Problem
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Model A: ŷ = β̂1 x + β̂0 Model B: ŷ = β̂2 x2 + β̂1 x + β̂0

Figure: The data points (blue cross) fitted assuming a linear model (left), and a
quadratic model (right). Regression estimates are (β̂0, β̂1) = (−0.9802, 3.1866)
for model A, and (β̂0, β̂1, β̂2) = (4.2380, 0.8875, 0.1997) for model 2. Which
model is the best ?
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The Model Selection Problem

Which model is the best ? = How well are you going to predict future
data drawn from the same distribution?

As a prediction error, we can compute the average Residual Squared
Error (RSE):

PE =
RSE

n
=

∑n
i=1(yi − ŷi )

2

n

where ŷi is the prediction by the model ŷi = β̂(xi ).

To start, yi is taken in the sample z (instead of a future response). In
this case, the prediction error is then called the apparent prediction
error (APE)
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The Model Selection Problem
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The Model Selection Problem

For our two models:

For model A, the apparent prediction error is 7.1240.

For model B, the apparent prediction error is 5.8636

The apparent prediction error computed with model B is better (smaller)
than with the model A. Note that the family of functions in B contains the
ones defined in A. So B can capture more variabilities in the data set z,
and can fit (in the sense of the APE) better the observation z.

But this is an apparent prediction error. What is the prediction error
for a new observation ?

How to get a new sample to compute this prediction?
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Cross-validation

For a more realistic estimate of the prediction error, we need a test
sample different from the training sample.

One way is to split the observation z into two sets, one for training
and the other one for testing.

Using a part of the available observation to fit the model, and a
different part to test in the computation of predication error is known
as the cross-validation.
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Simple and double cross-validation

Simple cross-validation. Divide the set z into two groups, one for
training and the other one for testing. The parameters β are
estimated on the training data set. The cross-validation is the
prediction error computed using the test sample.

Double cross-validation. Models are generated for both
sub-samples, and then both equations are used to generate
cross-validation.
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K-Fold cross-validation

1 Split z into K equal subsets zk

2 Do K times:
I Estimate the model β(k) on z(k) = {z1, ·, zk−1, zk+1, · · · , zK }

I Compute the prediction error PE(k) between the test sample zk and
the predicted model by β(k).

3 Compute the average of those K prediction errors as the overall
estimate of the prediction error

CV =
1

K

K∑
k=1

PE(k)
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K-Fold cross-validation

The number K of subsets depend on the size n of the observation z.

For large datasets, even 3-Fold Cross Validation will be quite accurate.

For small datasets, we may have to use leave-one-out cross
validation where K = n.

Multicross-validation is an extension of double cross-validation.
Double cross-validation procedures are repeated many times by
randomly selecting sub-samples from the data set.
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Cross-validation and parameter selection

We just show how to perform model selection (i.e. choice of the
number of parameters p in the regression model).

Cross-validation can also be used for parameter estimation by
choosing the parameter value which minimises the prediction error.

The cross-validation is computed using subsamples of z. An
alternative consists in considering bootstrap samples.
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Bootstrap estimates of the prediction error

1 Compute B boostrap resamples z∗ from the observation z

2 Compute the model parameter β∗(b) from z∗, and the corresponding
prediction error PE(b) with the testing observation being the original
sample z.

3 Compute the average of those B prediction errors as the overall
estimate of the prediction error

CVboot =
1

B

B∑
b=1

PE(b)
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Bootstrap estimates of the prediction error

This bootstrap extension to cross-validation turns out to not work
very well. But it can be improved.

Keep the record of the results from the previous procedure. Run a
second experiment but choosing the bootstrap sample z∗ itself as a
test sample. Compute the difference of the two previous results (this
difference is called optimism). This optimism is then added to the
APE ( as a bias correction).

Which is best between CV and bootstrap alternatives is not really
clear.
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Other estimates of the prediction error

So far, we have define the PE using the average RSE. This is the
prediction error measure used in cross-validation.

One can think of using other measures such as the Bayesian
Information Criterion (BIC)

RSE

n
+ log n · pσ̂2/n

BIC penalises the model as the number of parameter p increases. It is
a consistent criterion i.e. it chooses the good model as n→∞.

However, two drawbacks of the BIC compared to CV:
I you need an estimate σ̂.
I you need the knowledge of p.
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Summary

Cross validation method applied to selection model (regression).

Other applications such as classification use the cross-validation. In
this case, yi is a label indicating the class. The prediction error is
defined as a misclassification rate.

Those methods are very much used in machine learning.
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